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We perform kinetic Monte Carlo simulations of a distinguishable-particle lattice model of struc-
tural glasses with random particle interactions. By varying the interaction distribution and the
average particle hopping energy barrier, we obtain an extraordinarily wide range of kinetic fragility.
A stretching exponent, characterizing structural relaxation, is found to decrease with the kinetic
fragility in agreement with experiments. The most fragile glasses are those exhibiting low hopping
barriers and, more importantly, dramatic drops of entropies upon cooling toward the glass transition
temperatures. The entropy drops reduce possible kinetic pathways and lead to dramatic slowdowns
in the dynamics. In addition, the kinetic fragility is shown to correlate with a thermodynamic
fragility.

An important concept in the study of structural glasses
[1–3] is the kinetic fragility, often simply called the glass
fragility, which has been investigated in great detail for
different types of glass formers [4–7]. It describes how
rapidly the dynamics slows down when temperature de-
creases. The dynamics is typically characterized by vis-
cosity, structural relaxation time [8, 9], or particle diffu-
sion coefficient [10, 11]. Glasses possessing the most dra-
matic slowdown are classified as fragile, whereas the op-
posite are referred to as strong. Several models of glasses
have been able to reproduce a range of kinetic fragili-
ties [12–16]. A closely related thermodynamic fragility
[17] has also been defined and is based on how dramat-
ically the entropy drops as the temperature decreases.
Experimental results indicate, in general, a positive cor-
relation between the kinetic and thermodynamic fragili-
ties [17, 18]. Yet, a fundamental understanding of the
fragilities and their relationship is still lacking.

In this Letter, we study the kinetic and thermody-
namic fragilities using a recently proposed distinguish-
able particle lattice model (DPLM) of structural glasses
[19]. Lattice models are instrumental in statistical
physics. Celebrated examples include the Ising model
for magnetism and the Edwards-Anderson model for spin
glasses [20]. By bridging between analytic theory and
more realistic models, they play pivotal roles in the so-
lution and intuitive understanding of the systems con-
cerned. The DPLM aims at this bridging task for the
study of structural glass. It possesses exactly solvable
equilibrium statistics [19] and is promising for analytical
treatment [21, 22]. In support of its validity as a model of
glass, DPLM has successfully reproduced typical glassy
behaviors [19], a remarkable phenomenon known as Ko-
vacs’ expansion gap paradox [23], as well as Kovacs’ effect
for the aging of glasses [24]. It captures in simpler and
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more tractable form the relevant physics seen in molec-
ular dynamics (MD) and other realistic models, which
in turn are more detailed approximate models of glasses.
This should be a worthwhile approach considering that
direct analytical treatment of MD or experimental sys-
tems in finite dimensions has proved exceedingly chal-
lenging and controversial [3].

Here, we show that both the kinetic and thermody-
namic fragilities of the DPLM can be varied over wide
ranges of values via the fine-tuning of its kinetic and
thermodynamic properties. Modeled glasses with higher
kinetic fragilities in general exhibit smaller stretching ex-
ponents as well as higher thermodynamic fragilities, in
good qualitative agreement with experiments. The fun-
damental mechanisms behind the fragility variations in
this model are intuitively understandable, and are likely
applicable also to realistic glasses [22].

We adopt the DPLM proposed in Ref. [19], with minor
differences explained in Sec. I in supplementary informa-
tion (SI). It is defined on a 2D square lattice of size L2

with L = 100 and unit lattice constant following periodic
boundary conditions. There are N distinguishable parti-
cles on the lattice labeled from 1 to N . Each lattice site
i can be occupied by at most one of the particles with
a particle index si = 1, 2, . . . , N . For unoccupied sites,
i.e., sites occupied by voids, si = 0. A void density of
φv = 0.01 is considered. A particle configuration is spec-
ified by the set of particle indices {si} over all sites. The
total energy is

E =
∑
〈i,j〉′

Vsisj , (1)

where the sum is restricted to nearest neighbor (NN) sites
i and j occupied by particles. The interaction Vkl for each
pair of adjacent particles k and l is sampled before the
start of the simulation from the pair-interaction distri-
bution g(Vkl) and fixed subsequently. The particle index
si is time dependent since the site i will be visited by
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Figure 1. Arrhenius plot of D for various G0 at E0 = 0. The
system with a lower G0 is more super-Arrhenius.

different particles as the system evolves. Thus, Vsisj in
Eq. (1) is time dependent, although any Vkl for any given
particles k and l is quenched. Dimensionless units will
be adopted.

Particle distinguishability and particle-dependent in-
teractions are directly justifiable for polydispersive or
polymer systems. For identical-particle systems, it in-
stead accounts effectively for the generally different frus-
tration states experienced by the particles. It also models
high-entropy alloys [25] in the limit of a large number of
atomic species. Being a lattice model, particle vibrations
are not explicitly accounted for. A particle configuration
more precisely models an inherent state of a realistic sys-
tem [22].

A main feature of our work is the random sampling
for each Vkl ∈ [V0, V1] ≡ [−0.5, 0.5] from a bicomponent
distribution consisting of a uniform and a delta function
representing, respectively, unexcited and excited states
given by

g(V ) =
G0

∆V
+ (1−G0)δ(V − V1), (2)

where ∆V = V1 − V0 = 1 and δ denotes the Dirac delta
function. Here, G0 ∈ [0, 1] is our main thermodynamic
parameter controlling the fragilities. It equals the prob-
abilistic weight of the uniform unexcited component of
the distribution and also the probability density g(V0) at
the ground state energy V0. For G0 = 1, Eq. (2) reduces
to the uniform distribution adopted in Ref. [19], which
leads to a strong glass. Alternatively, for G0 = 0, all
interactions are at the excited energy state V1 and the
model reduces to a simple identical-particle lattice gas
with a uniform particle interaction.

We assume a void-induced dynamics, which has been
directly observed in recent experiments on glassy col-
loidal systems [26]. Using the Metropolis algorithm, each
particle can hop to an unoccupied NN site at temperature
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Figure 2. Kinetic Angell plot of D−1 against Tg/T for various
G0 and E0, where Tg for each curve is defined at Dr = 10−1.
A low G0 gives a fragile system. For a given G0, increasing
E0 makes the system stronger.

T at a rate

w =

{
w0 exp [− (E0 + ∆E) /kBT ] for ∆E > 0,

w0 exp (−E0/kBT ) for ∆E ≤ 0,
(3)

where ∆E is the change in the system energy E given
by Eq. (1) due to the hop and kB = 1 is the Boltzmann
constant. We put w0 = 106. The hopping energy bar-
rier offset E0 ≥ 0 is our main kinetic model parameter
for controlling the fragilities. Our algorithm satisfies de-
tailed balance.

Kinetic Monte Carlo simulations have been performed
on the DPLM, starting from directly constructed ini-
tial equilibrium configurations [19]. We report here our
main results while further details are given in Sec. II
in SI. The particle mean squared displacement defined
as MSD =

〈
|rl(t)− rl(0)|2

〉
is calculated, where rl(t)

denotes the position of particle l at time t. The par-
ticle diffusion coefficient D is computed according to
D = (1/2d) (MSD/t), where d = 2 is the dimension of
the system, at sufficiently large values of t in the diffu-
sion regime.

The Arrhenius plot in Fig. 1 shows D against 1/T for
E0 = 0 and various G0. We observe that logD decreases
with 1/T faster than linearly, demonstrating a super-
Arrhenius slowdown. The dependence of D on G0 for any
given T is nonmonotonic. Yet, the super-Arrhenius be-
havior strengthens monotonically as G0 decreases. This
can be clearly seen in a kinetic Angell plot in Fig. 2, which
plots D−1 against Tg/T for E0 = 0 (solid lines) using the
data from Fig. 1. We have defined the glass transition
temperature Tg as T at which D = Dr ≡ 10−1, where
the reference diffusion coefficient Dr is about the lowest
value we can simulate. We observe that D now varies
monotonically with G0 for any given Tg/T . More impor-
tantly, the super-Arrhenius property clearly strengthens
monotonically as G0 decreases. Related kinetic Angell
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Figure 3. Relationship between mk and β at E0 = 0, 0.5, 1
with G0 = 0.01, 0.03, 0.1, 0.3, 0.7, 1 (from left to right).

plot of structural relaxation time extracted from self-
intermediate scattering function shows closely analogous
trends (see Sec. II in SI).

Figure 2 also shows D−1 for E0 = 1 (dotted lines). Re-
sults are simply obtained from values of D for E0 = 0 af-
ter rescaling time by a factor exp (E0/kBT ), noting that
Tg has to be recalculated since Dr is not rescaled. We ob-
serve that a smaller E0 strengthens the super-Arrhenius
property at any given G0. The results in Fig. 2 capture
many qualitative features in experimental findings [5–7].

The kinetic fragility mk describes the super-Arrhenius
property quantitatively and is defined by mk =
∂ logD−1/∂(Tg/T )|T=Tg

. We obtain a wide range of
values of mk from 6.76 to 26.35. These values are in
general smaller than experimental ones typically in the
range from 25 to 150 [27], but this is only due to a rather
small Dr adopted for defining Tg. An extrapolation to
Dr = 10−14 is performed so that nearly 18 orders of
magnitude of D are considered, similar to analyses of
structural relaxation time and viscosity in experiments
[8, 9]. Then, mk ranges from 21.4 for large G0 and E0

and 120 for G0 = 0.01 and E0 = 0, consistent with the
experimental range (see Sec. III in SI).

To further establish the physical relevance of the
DPLM, we proceed to show that relaxation and ther-
modynamic properties of the strong and fragile glasses
from this model are consistent with experiments. First,
structural relaxation is studied by measuring the self-
intermediate scattering function

Fs(q, t) =
〈
eiq·(rl(t)−rl(0))

〉
, (4)

where q = (2π/L)q′ with q′ = 10. The results
are nicely fitted by the stretched exponential function
A exp

[
−(t/τ)β

]
for t & τ , where β, τ , and A are, respec-

tively, the stretching exponent, the relaxation time, and
a constant close to unity. Figure 3 plots mk against β at
Tg for various G0 and E0. It shows that mk tends to de-
crease approximately linearly with β, in agreement with
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Figure 4. Plot of mt against mk at E0 = 0 (circle), 0.5 (tri-
angle), and 1 (square) for various G0. Inset: Thermodynamic
Angell plot of −sex(T )/|sex(Tg)| at E0 = 0.

a trend observed previously in experiments [27]. In addi-
tion, the obtained range 0.37 to 0.81 of β is comparable
to that from experiments. Results on β are not signifi-
cantly affected by using smaller values of Dr, especially
for the fragile glasses since Tg only changes slightly.

Second, we study the thermodynamic properties of
our model by calculating an entropy-based thermody-
namic fragility. The equilibrium statistics including the
partition function Z of the DPLM are exactly known
[19]. The entropy per particle s(T ) is computed accord-
ingly. We further define an excess entropy per particle
sex(T ) = s(T ) − sLG over the entropy sLG of a simple
lattice gas [28]. [See Eq. (S23).] The inset of Fig. 4
shows a thermodynamic Angell plot of −sex(T )/|sex(Tg)|
against Tg/T for E0 = 0 and different G0. The results
resemble those of closely related thermodynamic Angell
plots from experiments [29] as well as the kinetic Angell
plot in Fig. 2. An increased E0 alters the curvature only
slightly for all values of G0. In general, a strong glass
with G0 = 1 is also thermodynamically strong with a
close-to-linear relation, while a fragile glass at G0 = 0.01
shows the most dramatic variations. The trend is in gen-
eral similar if other forms of thermodynamic Angell plots
[29] are considered.

We define a thermodynamic fragility mt as

mt =
∂ (−sex(T )/|sex(Tg)|)

∂ (Tg/T )

∣∣∣∣
T=Tg

, (5)

which is analogous to the kinetic counterpart mk. Fig-
ure 4 shows the kinetic fragility mt against the thermo-
dynamic fragility mk for various G0 and E0, displaying
a clear tendency of a positive correlation, i.e., mt ∼ mk.
The correlation is consistent with the general trend ob-
served in experiments based on related definitions [29]
and is mainly caused by the similar dependencies of mk

and mt on G0.
We have studied glass fragility using the DPLM for
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various values of model parameters G0 and E0. The
most fragile glass is obtained at small G0 and E0 = 0.
Extrapolating our simulation results toward G0 → 0,
the kinetic fragility mk appears to rise unboundedly (see
Fig. S12). The DPLM may hence model in-principle ar-
bitrarily fragile glasses. Simulations at very small G0 are,
however, prohibitively intensive due to increased finite-
size effects. At G0 = 0, the model reduces to a simple
lattice gas, which is not glassy. A high mk thus requires a
small but nonvanishing probability of low-energy particle
pairings.

We argue that G0 is the main material parameter
which captures the relevant particle interaction charac-
teristics and determines the fragilities mt and mk in
glasses. The value of G0 in a glass depends on the
detailed molecular interactions and is strongly affected,
for example, by the geometries of any tightly bounded
groups of atoms. A fragile glass obtained at a small G0

can be intuitively understood as follows. At high T , all
particle configurations are possible, leading to a high en-
tropy s(T ) independent of G0. Most interactions take
the excited states with energy V1 due to their high prob-
abilistic weight 1−G0 [see Eq. (2)]. Particle pairings with
unexcited energies close to V0 are in contrast rare due to
the small probabilistic weight G0. As T decreases, the
lower energies render them energetically favorable and
increasingly dominant. The entropy s(T ) thus drops dra-
matically and becomes small at low T , accounting for a
high mt.

We further suggest that this high mt is closely corre-
lated to a high mk. This is because the system dynamics
at low T amounts to sampling various energetically favor-
able configurations. The rarity of these configurations as
indicated by the low entropy implies highly constrained
kinetic pathways of particle motions. This leads to a
sharp drop in D as described by a large mk. A possible
characteristic of constrained kinetics is repetitive parti-
cle motions. Our picture is thus supported by a sharp
increase in a particle return probability but a mild drop
of the particle hopping rate as T decreases as explained in
Sec. II in SI. The thermodynamic parameter G0 therefore
strongly impacts the system thermodynamics and hence
also the kinetics. In contrast, the kinetic parameter E0 is
of lesser importance to the fragility properties. By con-
trolling the hopping barrier, it clearly has a strong and
direct impact on mk. However, it plays no role in the
equilibrium statistics and in particular in the system en-
tropy [see Eq. (S23)]. It has a tiny impact on mt only
by influencing the value of Tg at which mt is evaluated.
Not accounting for the correlation between mk and mt

observed in experiments, we expect E0 to play a smaller
role in the variation of mk among various glasses.

The particle interaction distribution g(V ) has been
taken with a bicomponent form consisting of a low-energy
uniform distribution and a high-energy delta function for
simplicity. The delta function represents excited particle
interactions more relevant at higher T and replacing it by
some narrow Gaussian leads to similar simulation results.

The uniform distribution is the simplest continuous dis-
tribution with a lower bound V0, corresponding to the
energy minimum present in typical pair potentials such
as the Lennard-Jones potential. The continuous form of
g(V ) around V0 is expected to lead to glassy behaviors
even at a very low T , as the model reduces to one with
a single uniform distribution studied in Ref. [19].

The DPLM with a bicomponent g(V ) is closely related
to a bond excitation model proposed by Moynihan and
Angell [30], in which particle bonds can assume either
an unexcited or excited state (see Sec. VI in SI). At low
T , the realized interactions Vsisj from the uniform un-
excited component have a small energy spread of about
kBT around V0 + kBT . Neglecting this energy spread,
the ratio of the degeneracy of the excited states to that
of the unexcited states is about (1−G0)/G0, leading to
an entropy difference

∆S0 ' kB ln[(1−G0)/G0]. (6)

Considering G0 = 0.01 corresponding to fragile glasses,
we get ∆S0 ' 4.60kB . A more accurate calculation us-
ing Eq. (S45) gives a similar value of ∆S0 ' 5.42kB .
Reverting to physical units with kB = 8.315 J/mol K,
it gives ∆S0 ' 45.1 J/K per mole of excitable states.
This value matches that of ∆S0, for example, for toluene
in Ref. [30], which has a high mk = 103. In addition,
∆H0 ' 1−kBTg is the energy difference between the ex-
cited and unexcited states in our model. At Tg ' 0.163,
∆H0/kBTg ' (1− 0.163)/0.163 ' 5.15 for G0 = 0.01. It
compares well with the value 6.95 for toluene in Ref. [30].

The quantitative consistency demonstrated above
means that the bond excitation model provides a simpli-
fied theoretical description for the thermodynamic prop-
erties of the DPLM with the bicomponent g(V ). More-
over, the success of the bond excitation model in de-
scribing the entropy of fragile glasses in Ref. [30] justifies
the bicomponent form of g(V ) used in this work. From
Eq. (6), a fragile glass characterized by a small G0 pos-
sesses a large ∆S0. These material parameters depend
on the detailed molecular interactions. For molecular or
polymer glasses which are often fragile, their values may
reflect that the geometrically complex molecules fit well
with each other to form very stable bonds only at a rare
set of orientations and conformations. In contrast, strong
glasses including network glasses may consist of simpler
structures such as tetrahedrons. A simple random spread
of the interactions due to frustration can then account for
G0 ' 1 and a small ∆S0.

We have found that the thermodynamic parameter G0

has the strongest impacts on both mk and mt. In con-
trast, the kinetic parameter E0 also plays a significant
role for mk but not so much for mt. Further simulations
show that the void density φv has rather small effects
on both mk and mt, as long as φv � 1 which ensures
the glassy state. One can also consider model variations
such as a different g(V ). Since glass properties depend on
multiple model parameters, the relations discussed here
between mk, mt, and β are only general trends assuming
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small variations in other parameters. Exceptions are thus
possible in more general settings. From another point of
view, the value of mk does not uniquely determine the
precise geometry of the whole curve in the Angell plot in
Fig. 2 when multiple material parameters are taken into
account. These are fully consistent with experimental
observations [5].

To sum up, we have studied fragility properties of
glasses using kinetic Monte Carlo simulations and an-
alytic calculations based on the DPLM. A wide range of
values of kinetic fragility is reproduced, indicating the
possibility of arbitrarily fragile glasses limited only by
computational resources. The kinetic fragility is mainly
controlled via a thermodynamic parameter G0, dictating
the probability distribution of particle pair interactions.
The most fragile glass is obtained at smallG0 correspond-
ing to the case that pair interactions can take low-energy
states with a small but nonvanishing probability, i.e. low-
entropy unexcited states. These configurations physically
represent rare pairings between particles with exception-

ally stable arrangements. As the temperature decreases,
particle configurations are increasingly constrained to
these low-energy pairings. This causes a dramatic drop in
the entropy associated with a dramatic slowdown in the
dynamics, resulting, respectively, in high thermodynamic
and kinetic fragilities. Our model, upon variations in G0,
exhibits correlations between kinetic fragility, thermody-
namic fragility, and a relaxation stretching exponent, in
qualitative agreement with general trends observed in ex-
periments. The kinetic fragility is also affected by a ki-
netic model parameter E0. A fragile glass is obtained
at small E0 corresponding to particle hopping activation
barriers with an average which is small compared to their
fluctuations.
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Supplymentary Information for Fragile Glasses Associated with a Dramatic Drop of
Entropy under Supercooling

I. MODEL DETAILS: DIFFERENCES FROM
PREVIOUS DEFINITION

We now provide further details of the DPLM adopted
in this work, focusing on the differences of this vari-
ant with respect to that in Ref. [1]. A main feature in
this work is to study a bicomponent form of the pair-
interaction energy distribution g(V ), generalizing a sim-
ple uniform distribution used in Ref. [1]. This has been
discussed in the main text. Here, we explain other dif-
ferences.

Particle-dependent interactions: In this work, we
consider a particle-dependent interaction Vkl between
nearest neighboring (NN) particles, which depends only
on the particle labels k and l (see Eq. (1) of the main
text). This is a simplification from Ref. [1] which uses a
site-particle-dependent interaction Vijkl with additional
explicit dependences on the sites i and j at which par-
ticles k and l are located. In Ref. [1], the explicit site
dependence was introduced to model different frustration
states at difference sites. It was already shown analyti-
cally in Ref. [1] that the same exact equilibrium statis-
tics hold for both Vijkl and Vkl types of interactions. We
have verified that adopting either Vijkl or Vkl gives qual-
itatively similar features for all numerical measurements
reported in Ref. [1] and in this work. Only minor quan-
titative differences are observed in general.

Although both Vijkl and Vkl interaction types should
in principle be applicable in this work, the computation
for the case of Vijkl is more intensive and is thus not
adopted. Specifically, the whole set of Vijkl requires a
memory allocation of size ∼ N3 ∼ L6, for the case of N
particles in a nearly fully occupied lattice of linear size
L. Using a two-step interaction energy tabulation ap-
proximation, the requirement reduces to a manageable
size of ∼ N2. This approximation has been verified to be
accurate for G0 = 1 in particular by checking that the
system energy E [see Eq. (1)] measured from simulations
agrees with an exact theoretical value [1]. However, we
find in this work that the accuracy can deteriorate as
G0 decreases because the approximation admits strong
finite size effects. For example, for G0 = 0.01, L = 100
and T = 0.22, the measured E deviates by about 18%
from the theoretical value. The error reduces if a larger
L is used, but memory requirements may then be too de-
manding. In contrast, using Vkl for the same conditions,
the discrepancy in E decreases to only about 0.6%. The
memory consumption to store the whole set of Vkl is also
of a manageable size of ∼ N2 without needing the two-
step interaction energy tabulation approximation.

Metropolis algorithm: We apply a Metropolis form of

the particle hopping rate w in Eq. (3) with a hopping en-
ergy barrier E0 + max{∆E, 0}, where ∆E is the change
of the system energy E induced by the hop attempt and
E0 is an energy barrier offset. The energy barrier must
be non-negative in all cases and this requires E0 ≥ 0. In
Ref. [1], an activated-hopping form of the rate was used
instead. A similar enforcement of the non-negativity of
the energy barriers leads to a constraint E0 ≥ 1.5 for an
analogously defined offset E0. Both the Metropolis and
the activated hopping algorithms are widely used dynam-
ics in simplified forms and both satisfy detailed balance.
Nevertheless, an offset of E0 = 0 is only possible for the
Metropolis algorithm and it corresponds to the case of a
small average barrier or equivalently large barrier fluctu-
ations. We have found in this work that this is the regime
in which the most fragile glass can be obtained. In ad-
dition, dynamical pathways with the minimum possible
barriers consistent with detailed balance in general ex-
ist according to potential energy landscape calculations
on amorphous silica [2]. The Metropolis form is thus
adopted to realize a wider range of fragilities. Interest-
ingly, our results suggest that very fragile glasses have
large fluctuations in the particle hopping energy barri-
ers, which may be more consistent with the Metropolis
function than the activated hopping function.

II. DETAILED SIMULATION RESULTS

Diffusion coefficient and Mean square displace-
ment: Figure S1 shows our kinetic Monte Carlo simu-
lation results on the mean square displacement MSD(t)
versus t for the example of a fragile glass at G0 = 0.01
and E0 = 0. At each temperature T , we extract the dif-
fusion coefficient D from D = (1/2d) (MSD/t) with d = 2
at sufficiently large t in the diffusive regime. Specifically,
we require that t is large enough to ensure that MSD > 1
and MSD ∝ tγ with 0.95 ≤ γ ≤ 1. For other values of
G0, the MSD is similarly measured and all results on D
are shown in Fig. 1 in the main text.

As observed in Fig. 1, the dependence of D on G0 for
any given T is nonmonotonic. This can be explained as
follows. The energy E of the system equals the sum of all
realized pair interactions Vsisj [See Eq. (1)]. D is smallest
when particle hops involve the maximum fluctuations in
Vsisj . This is because excitations from the very stable
states slow down the dynamics. Take T = 0.25 as an
example. When G0 is small, nearly all Vsisj equal V1 =
0.5 and this results in a high D in Fig. 1. When G0 = 1,
Vsisj are distributed mainly in the range (V0+kBT )±kBT
with V0 = −0.5 and kB = 1, which is still a narrow range.
This hence also leads to a relatively high D. In contrast,
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for G0 ∼ 0.3, Vsisj jumps between (V0 + kBT ) and V1,
as neither component of the interactions are negligible.
This results in large fluctuations in the energies of the
configurations related by particle hops and hence a small
D. The precise minimized point of D depends also on
entropic effects and thus on T .

From Fig. S1, we observe the emergence of a plateau
characteristic of glasses as T decreases. The MSD for
the example of a strong glass has been shown in Ref. [1].
Compared with a strong glass, results on the fragile glass
in Fig. S1 exhibits a much more stretched-out plateau at
low T . Despite the shallow plateaus in the MSD shown
in Fig. S1 and in Ref. [1], our systems at low T is in
fact deeply supercooled, by common measures in typical
lattice or molecular dynamics (MD) simulations. Due to
the lack of lattice vibrations, lattice simulations even in
deeply supercooled regime always show shallow plateaus
(see e.g. [3]). The MSD in Fig. S1 more precisely repre-
sents MSD of coarse-grained particle positions. It can be
compared directly with the MSD based on the evolution
of particle positions in inherent structures [4], which have
been demonstrated computationally to possess a much
shallower plateau than those with vibrations [5]. If one
would add to the MSD the contribution of vibrations us-
ing some adiabatic approach, the plateau will be located
around MSD ' 0.1, a typical value for particles of unit
size. The plateau will then become much broader and
more pronounced.

We have performed independent simulations for differ-
ent values of T and G0 primarily for E0 = 0 as discussed
above. Results for other values of E0 > 0 can be trivially
obtained from those at E0 = 0 by rescaling time by a
factor exp (E0/kBT ), without performing further simu-
lations. The diffusion coefficient D at E0 > 0 is simply
obtained by multiplying the corresponding value of D for
E0 = 0 by a factor exp (−E0/kBT ). Note that we define
Tg as T at which D = Dr ≡ 0.1, where the reference
Dr remains a constant admitting no rescaling. As D is
rescaled, Tg is varied and is recalculated from D = Dr.
Results on D and Tg accordingly calculated for various
E0 are applied in Fig. 2 in the main text.

Temperature dependent void density: Simulations
in the main text are done with a fixed void density
φv = 0.01 for simplicity, which is a small value more
appropriate for glasses at low T with limited free vol-
umes. In reality, φv should increase as T increases. To
model this phenomenon, we perform further simulations
at G0 = 0.1 and E0 = 0 assuming a T dependent φv
given by

φv(T ) = φ∞v e
−Ev/kBT , (S1)

where φ∞v denotes the void density at the high T limit
and Ev is the free energy cost of void formation. We take
φ∞v = 0.30 and Ev = 0.75. At high T , φv ' φ∞v so that
voids are abundant and particles can diffuse relatively
freely as expected in non-glassy liquids. At low T , the
model crosses over to the case with φv = 0.01, noting
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Figure S1. MSD(t) against t at G0 = 0.01 and
E0 = 0. Different curves represent different T =
0.4, 0.3, 0.24, 0.22, 0.2, 0.19, 0.18, 0.175, 0.17, 0.1667, 0.1626
(from left to right).
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Figure S2. Arrhenius plot of D against 1/T at G0 = 0.1 and
E0 = 0 for a T -dependent void density φv(T ) and a constant
φv = 0.01.

φv(T = 0.22) = 0.01. The result on the diffusion coeffi-
cient D is shown in Fig. S2 and is compared with the case
with a constant φv = 0.01. Using φv(T ) from Eq. (S1),
D becomes larger at high T due to the increased φv. By
defining Tg at Dr = 0.1, Fig. S3 plots D−1 against Tg/T .
Also shown for comparison are examples of results for
other values of G0 at φv = 0.01 from Fig. 2. We observe
a spread of the high temperature limiting values of D−1

and this removes an artifact introduced by the constant
φv assumption. The fragility, which is predominantly a
low T property, on the other hand is much less affected.
For G0 = 0.1, the kinetic fragility mk computed using
φv(T ) is 19.3. It is slightly higher than the value 16.2
found for the constant φv = 0.01 case. Therefore, results
on fragility from our simple consideration of a constant
φv are expected to be valid in general.
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0.01 and E0 = 0.

Hopping rates and return probability: Glassy dy-
namics has strong temporal correlations characterized by
numerous back-and-forth particle hopping motions. We
now report analysis on dynamic rates and return prob-
ability to study the temporal correlations, following our
previous works on polymer simulations [6, 7]. The hop-
ping rate R1 of any individual particle is defined as the
number of hops per particle per unit time. For our fragile
glass with G0 = 0.01 and E0 = 0, R1 is measured from
our simulations and results are reported in Fig. S4. For
comparison, we have also plotted the structural relax-
ation rate Rα = 1/τα where the relaxation time τα is ex-
tracted from the mean square displacement at MSD = 1
(see Fig. S1).

From Fig. S4, we see that R1 exhibits only a very
mild super-Arrhenius slowdown compared with Rα as T
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Figure S5. Probabilities of returning hop Pret and non-
returning second hop P2 against Tg/T , with Tg defined at
D = Dr ≡ 0.1.
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Figure S6. Plot of D against Pret for various G0 and E0 = 0.

decreases. Assuming isolated voids valid for the small
φv = 0.01 used, R1 = 4φv 〈w〉, where 〈w〉 is the aver-
age of the hopping rate w of a particle next to a void.
As defined in Eq. (3), w depends on the hopping energy
barrier E0 + ∆E, where ∆E is the change of the system
energy due to the hop. A mild T dependence of R1 thus
implies a mild increase of the relevant hopping barriers as
T decreases, which cannot explain the glassy slowdown.

To study hopping correlations, we monitor each parti-
cle after its first hop for a long duration. We measure the
probability Pret and P2 that it will next perform either a
returning hop to its original position or a second hop to
a third position respectively. The rate R2 = P2R1 of a
second non-returning hop is also shown in Fig. S4. It is
clear that R2 exhibits a stronger super-Arrhenius T de-
pendence than R1. Compared with R1, the value of R2 is
closer to Rα and can better characterize the glassy slow-
down. Nevertheless, R2 still shows a slowdown milder
than that of Rα. This is because a sequence of two hops
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to distinct positions is also often reversed and repeated
at low T and may not characterize structural relaxations,
as have been observed in polymer simulations [6]. It will
be interesting to measure Rn with n ≥ 3 characteriz-
ing the rates of sequences of n non-returning hops af-
ter subsequences of back-and-forth hops in between are
disregarded. Then, Rn at large n may show the same
slowdown as Rα.

Figure S5 plots Pret and P2 against Tg/T for various
values of G0. Qualitatively, the result is very similar to
that from polymer simulations in [6, 7]. In particular, it
supports that Pret → 1 when T → 0. Pret has reached
0.97 at the lowest T studied. A high Pret clearly con-
tributes to dynamic slowdown. It signifies highly con-
strained kinetic pathways resulting from a reduced en-
tropy as argued in the main text. For the most fragile
glasses at small G0, we observe that Pret rises with Tg/T
most abruptly and the rise coincides with the abrupt drop
of D. Furthermore, we plot D against Pret for all G0 at
E0 = 0 in Fig. S6, which shows a nice collapse of the data
into a single curve. This further supports the strong rele-
vance of Pret to D and thus to mk. Note that the collapse
clearly breaks down for other values of E0 as only D but
not Pret depends on E0. The properties of P2 is comple-
mentary to those of Pret since Pret + P2 ' 1. The sum
Pret+P2 is slightly less than 1 because some particles do
not perform a second hop even after a long duration.

Self-intermediate scattering function: Figure S7
shows the self-intermediate scattering function Fs(q, t)
[1] computed from our simulations for the fragile case at
G0 = 0.01 and E0 = 0, where q = (2π/L)q′ with q′ = 10.
A very stretched-out relaxation is also observable at low
T , analogous to results on the MSD. For example, the
relaxation causing Fs(q, t) to drop from 0.9 to 0.1 cov-
ers about three decades in time for the lowest T studied.
Compared with results for a strong glass illustrated in
Ref. [1], the decay in Fig. S7 for the fragile glass is sig-
nificantly more stretched out.

Moreover, Fs(q, t) in Fig. S7 shows apparently a single-
step relaxation, which is indeed a two-step relaxation
with a tiny first drop only noticeable upon magnification
or in a semi-log scale, similar to the case of the strong
glass in Ref. [1]. A small first relaxation step is again
typical of lattice models due to the lack of vibrations.
The main relaxation is well fitted by the Kohlrausch-
Willianms-Watts (KWW) stretched exponential function
A exp(−(t/τ)β) at sufficiently large t beyond the first re-
laxation step. Here, β is the stretching exponent while τ
and A ' 1 are the relaxation time and the decay mag-
nitude of the main relaxation. Specifically, we extract β
from the fit around Fs(q, t) = 1/e. For other values of
G0, values of β are similarly obtained.

Results for E0 > 0 can be obtained from those for E0 =
0 after performing a rescaling of time as explained above
for the calculations of D. While the time rescaling alters
Fs(q, t), it does not affect β for any fixed T . Therefore,
the value of β at Tg depends on E0 only via Tg. Figure S8
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Figure S7. Fs(q, t) against t at G0 = 0.01
and E0 = 0 with q′ = 10. Different
curves represent different temperatures at T =
0.4, 0.3, 0.24, 0.22, 0.2, 0.19, 0.18, 0.175, 0.17, 0.1667, 0.1626
(from left to right).
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Figure S8. β against Tg/T at G0 = 0.01, 0.03, 0.1, 0.3, 0.7, 1.
Tg is extracted at Dr = 0.1 for E0 = 0.

shows the plot of β against Tg/T for all values of G0 at
E0 = 0. Using these and similar results for E0 > 0, we
perform third-order polynomial fits to the dependence of
β on Tg/T to provide the best estimate of β at Tg, which
are used in Fig. 3 in the main text.

We have also computed the structural relaxation time
τ defined using the self-intermediate scattering function
by Fs(q

′ = 10, t = τ) = e−1. The corresponding Arrhe-
nius plot and kinetic Angell plot are shown in Figs. S9
and S10, where Tg in Fig. S10 is defined as T at which
τ = 100. Qualitatively, results in Figs. S10 and 2 are fully
analogous. Quantitatively, at low T , τ diverges faster
than D−1, leading to the Stoke-Einstein violation shown
in Fig. S11. It is clear from Fig. S11 that the fragile
systems exhibit a stronger violation.
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Kinetic and thermodynamic fragilities: We have
calculated the kinetic and thermodynamic fragilities mk

and mt for various values of G0 and E0. Results are
shown in Figs. S12 and S13 respectively. We observe em-
pirically that for G0 . 0.7, both mk and mt decrease
linearly with logG0. Furthermore, mk increases signifi-
cantly as E0 decreases for small G0. Otherwise, for mt

and mk at large G0, the dependence on E0 is weak. Com-
bining the results in Figs. S12 and S13, we obtain the plot
of mt against mk in Fig. 4 in the main text.

III. KINETIC FRAGILITY EXTRAPOLATED
TO REALISTIC TIME SCALE

Experimental values of the kinetic fragility mk range
typically from about 25 to 150 [8]. Our simulations give
values from 6.76 to 26.35 which are in contrast a few
times smaller. Nevertheless, this is only because we have
adopted a large reference diffusion coefficient Dr = 0.1 in
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Figure S11. Plot of Dτ against Tg/T for various G0, with τ
evaluated at q′ = 10 and Tg defined at Dr = 0.1. The non-
constancy of Dτ with respect to T indicates the violation of
the Stoke-Einstein relation.
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the definition of Tg because of computational limitations.
In fact, similar to all microscopic particle simulations,
our DPLM simulations correspond to very short physi-
cal time scales compared with experimental situations.
Adopting a much smaller Dr in direct analysis of sim-
ulations is not feasible because the required simulations
would involve much slower dynamics. Here, we show that
by extrapolating to a realistic value of Dr, corresponding
to a much longer time scale, the obtained values of mk

increase significantly and are consistent with the typical
experimental range.

We compute

mk =
∂ logD−1

∂(Tg/T )

∣∣∣∣
T=Tg

(S2)

numerically from the values of D close to Tg. We define
Tg as the temperature at which D = Dr with Dr = 0.1.
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Let us first consider the strong glass limit correspond-
ing to Arrhenius dynamics with the smallest possible ki-
netic fragility mstrong

k . As T →∞, the model reduces to
a simple lattice gas. The diffusion coefficient is approxi-
mately given by

D∞ '
(z − 2)w0φv

2d
(S3)

with the coordination number z = 2d and dimension
d = 2 [9]. It evaluates to D∞ ' 5 × 103 for small
φv = 0.01, Assuming an Arrhenius T dependence of D,
Eq. (S2) gives mstrong

k = log(D∞/Dr) ' 4.70. This is
close to mk = 6.76 for the strongest glass we have con-
sidered at G0 = 1 and E0 = 1 in the main text. We
next consider a more realistic value of Dr = 10−14. This
value is chosen so that as T varies from Tg to∞, D varies
by nearly 18 orders of magnitude, a variation compara-
ble to typical experimental ranges [10, 11]. This gives

mstrong
k = 21.4, which is consistent with experimental

values for strong glasses.

For the case of fragile glasses, we have obtained a

large kinetic fragility mfragile
k = 26.35 at G0 = 0.01 and

E0 = 0 based on Dr = 0.1. More generally, Fig. S14

plots mfragile
k obtained from simulations for Dr = 0.2,

0.1414, 0.1, 0.707 and 0.05. For Dr < 0.1, we have per-
formed a parabolic extrapolation to data in Fig. 1 and

computed mfragile
k using Eq. (S2) based on the extrapo-

lated values of D. The result shows an empirical relation

mfragile
k ∼ lnDr. An extrapolation using this relation

to Dr = 10−14, we get mfragile
k = 120, which is more

consistent with the experimental range. In principle, by
extrapolating our simulation results towards G0 → 0, the
kinetic fragility mk appears to rise unboundedly.
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Figure S14. Kinetic fragility mfragile
k against Dr for G0 =

0.01 and E0 = 0.

IV. EXACT EQUILIBRIUM STATISTICS AND
NUMERICAL VERIFICATIONS

We first summarize the equilibrium statistics of the
DPLM on the 2D square lattice developed in [1]. Simu-
lations are all performed in an canonical ensemble with
a set of N particles. The partition function in canonical
ensemble is given by

Z =
∑
{si}

e−E/kBT , (S4)

where the sum is over all possible particle configurations
{si} and E is the system energy given in Eq. (1). Here,
si denotes the particle at site i, with si = 0 denoting
instead a void. The occupation state at site i can be
expressed as ni = 1 − δsi,0, where δ is the Kronecker
delta. Equation (S4) can be rewritten as a sum over
different occupation states as

Z =
∑
{ni}

Z{ni}, (S5)

where the partition function for a given occupation state
{ni} is given by

Z{ni} =
∑

{si>0}∈PN

∏
<i,j>′

e−Vsisj
/kBT . (S6)

after using Eq. (1). Here, PN denotes the set of all per-
mutations of the N particles and the product is over all
nearest neighboring sites i and j.

At the thermodynamic (i.e. large N) limit, it was
shown in [1] that an average over particle permutations
PN gives exactly

Z{ni}
N !

= e−NbU/kBT , (S7)
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where Nb is the number of nearest neighboring particle
bonds in the system and U is the free energy of the cor-
responding interactions defined by

U = −kBT ln

∫
e−V/kBT g(V )dV . (S8)

Applying Eqs. (S5) and (S7), the exact partition function
can be written as

Z = N !
∑
{ni}

e−NbU/kBT . (S9)

Note that no ensemble averaging over the interactions Vkl
has been performed yet, but they are already averaged
out by the particle permutation averaging. Therefore,
both quenched and annealed ensemble averaging over the
interactions trivially arrive at the same exact partition
function Z in Eq. (S9).

Using Eqs. (S5) and (S6) and the applicability of an-
nealed averaging, it was shown in [1] that a realized inter-
action Vsisj follows exactly the Boltzmann distribution

peq(V ) =
1

N
e−V/kBT g(V ) (S10)

where

N =

∫
e−V/kBT g(V )dV (S11)

is a normalization constant. The system energy E in
Eq. (1) then gives

E = N∗b V (S12)

where N∗b is the most probable value of the number of

interactions in the system and V is the average realized
interaction energy given by

V =

∫
V peq(V )dV. (S13)

The availability of an exact partition function Z in
Eq. (S9) and the resulting exact equilibrium properties
are remarkable properties of the DPLM. It is in our
knowledge unique among energetically non-trivial mod-
els of glass defined on the square lattice and it has no
counterpart for the closely related problem of spin glass.
This highly surprising feature requires careful scrutiny.
The exact distribution peq(V ) in Eq. (S10) can be veri-
fied to a high precision by histograms of realized inter-
actions in equilibrated systems. Examples of results are
reported in [1] and [12]. The verification of the exact
energy E in Eq. (S12) will also be explained later. Note
that the validity of the exact expressions of peq(V ) and
E in Eqs. (S10) and (S12) rely directly on the validity of
the exact partition function Z in Eq. (S9).

From Eq. (S9), it is clear that DPLM shares the same
equilibrium particle occupation statistics with a sim-
ple lattice gas model with a uniform nearest neighbor-
ing particle interaction energy U . On the 2D square
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Figure S15. Vaporization temperature Tv and phase separa-
tion temperature Ts against G0, where Ts is evaluated at a
void density φv = 0.01.

lattice, the simple lattice gas model admits a parti-
cle condensation-evaporation transition corresponding to
the ferromagnetic-paramagnetic transition of the Ising
model with an exchange interaction J = −U/4 [13]. It
occurs at a vaporization temperature Tv, given exactly
by the Onsager solution [14]

Tv =
−U

2 ln (1 +
√

2)
. (S14)

For G0 = 1, we get Tv = 0.132 as evaluated in [1]. Fig-
ure S15 plots Tv for all values of G0.

The condensation-evaporation transition at Tv is read-
ily observable in the DPLM. We have observed from real-
space animations at G0 = 1 and φv = 0.5 typical spinodal
decomposition into co-existing particle and void aggre-
gates as T is decreased below Tv. Theoretically, the exact
partition function Z in Eq. (S9) remains valid both be-
low and above Tv for the DPLM, analogous to the case
of a simple lattice gas. The transition manifests itself
through the non-analyticity of N∗b and thus also of E at
Tv [14].

In all simulations reported in this work, we consider T
well above Tv so that no macroscopic void cluster exists.
This is because in the evaporation phase, particle and
void aggregates are miscible and two-phase co-existence
is not applicable. It represents the physical regime we
are interested in since large void aggregates do not typ-
ically exist in equilibrated supercooled liquids with few
free volumes. Furthermore, large void aggregates in fact
is not guaranteed to form even below Tv due to the small
void density φv. Below Tv, the occurrence of macroscopic
aggregates of the minority component, i.e. the voids, is
further controlled by the phase separation temperature
Ts ≤ Tv. Only for T < Ts, macroscopic particle con-
densates and void clusters become immiscible and phase
separates. Here, Ts is obtained by solving the Onsager-
Yang equation [15, 16]. For the DPLM, it is given exactly
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Figure S16. Plots of energy per particle E/N against time
t from simulations at T = 0.2 and φv = 0.01 using a high-
temperature initialization (purple line) and a direct initializa-
tion method (orange line). The black dotted lines show theo-
retical predictions of the equilibrium values using Eq. (S18).
We take G0 = 0.01 (a) and 1 (b).

by

Ts =
−U

2 sinh−1
[
(1− (2φv − 1)8)

− 1
4

] . (S15)

For φv = 0.01, the results on Ts for different G0 is also
plotted in Fig. S15.

At a first sight, the possible occurrence of phase separa-
tion at Tv in addition to the glass transition at Tg appears
to complicate the description of glass by the DPLM. How-
ever, this is not the case. From Eq. (S15), as φv → 0,
Ts → 0, meaning that macroscopic void aggregates can
be avoided at arbitrarily low T by selecting a sufficiently
small φv. There thus exists the physically relevant sit-
uation with an increasingly small void density φv as T
decreases (see e.g. Eq. (S1)) so that Ts is always be-
low T . Thus, phase separation should not occur and no
macroscopic void aggregate appears at any T .

Results above are exact for arbitrary φv. Now, we as-
sume a small φv so that voids are mostly isolated. This is

justified for all simulations reported in this work because
T � Ts with Ts shown in Fig. S15. Voids clusters must
be so small that voids are isolated most of the time as
is observable through the real-space visualizations (see
Fig. 7 and videos in [1]). Assuming isolated voids, the
number of particle interactions in the system follows

Nb = 2N(1− φv), (S16)

which is now a constant independent of the occupation
state {ni}. Using Eq. (S9), the partition function after
summing over the occupation states is

Z = N !Me−βNbU , (S17)

where M is the number of possible particle occupation
states. On the other hand, Eq. (S12) becomes

E

N
= 2(1− φv)V , (S18)

noting that N∗b = Nb. The exact system energy E from
Eq. (S18) is another non-trivial result following from the
exact equilibrium statistics and the isolated void assump-
tion. To verify its validity, Fig. S16 plots examples of the
time-evolution of E/N for systems randomly initialized
at T = ∞. It converges well to the exact value from
Eq. (S18). This verifies Eq. (S18) which in turn veri-
fies both the exact equilibrium statistics and the isolated
void assumption.

In our main simulations, we apply a direct initializa-
tion method introduced in [1]. Specifically, a simple lat-
tice gas with interaction U is first equilibrated, which is a
very rapid procedure even at low T . Unrealized interac-
tions Vkl are then sampled based on the a priori distribu-
tion g(V ) while the realized interactions Vsisj are instead
sampled from the a posterior distribution peq(V ) given in
Eq. (S10). The system energy E, also shown in Fig. S16,
is already stable right after the sampling. This verifies
the validity of the direct initialization method and hence
again of the exact equilibrium statistics from which the
method is derived.

V. ENTROPY AT SMALL VOID DENSITY

For small φv, using the partition function Z given
in Eq. (S17), the system entropy S can be calculated
straight-forwardly. From simple combinatorics, M =
C(L2, Nv), where Nv = L2φv ' Nφv denotes the number
of voids. Using lnn! ' n lnn− n, we get

lnM = Nv(ln(L2/Nv) + 1) = Nv(1− lnφv). (S19)

Using Eqs. (S17) and (S19), the Helmholtz free energy
F = −kBT lnZ equals

F = NbU −kBTNv(1− lnφv)−kBTN(lnN −1). (S20)
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From the thermodynamic relation F = E − TS with
E = NbV , we get

S =
Nb
(
V − U

)
T

+NkBφv (1− lnφv) +NkB (lnN − 1) ,

(S21)
Defining the entropy per particle as s = S/N , we further
define an excess entropy per particle sex(T ) = s(T ) −
sLG relative to the entropy sLG = kBφv (1− lnφv) +
kB (lnN − 1) of a simple lattice gas [17]. Equations (S16)
and (S21) then give

sex =
2 (1− φv)

(
V − U

)
T

(S22)

Applying Eqs. (2), (S8), (S10) and (S13) and after some
straight-forward algebra, we get

sex = 2kB(1− φv)
{

1 + ln
[
(G0/∆V )kBT (1− e−∆V/kBT )

+ (1−G0)e−∆V/kBT
]

+
[(1−G0)∆V/kBT − 1]

(G0/∆V )kBT (e∆V/kBT − 1) + (1−G0)

}
, (S23)

which is exact at the small φv limit. Figure S17 shows
the result for sex at G0 = 0.001, 0.01, 0.1, and 1. As T de-
creases, a significant drop of sex occurs around T ' 0.15
and it becomes more and more dramatic as G0 decreases.

This dramatic and controllable drop of sex around T '
0.15 is the main cause of the high fragilities at small G0.
It results from a shift of the relative importance of the
two components in g(V ). It can be intuitively understood
by studying the interplay between the two components
as follows. The bicomponent g(V ) in Eq. (2) in the main
text can be written as

g(V ) = gA(V ) + gB(V ) (S24)

where components labeled A and B are the uniform and
Dirac distributions given by

gA(V ) =
G0

∆V
, (S25)

gB(V ) = (1−G0)δ(V − V1). (S26)

for V ∈ [V0, V1] with ∆V = V1 − V0. Generalizing
Eqs. (S11), (S13), (S8) and (S22) to individual compo-
nents, we write

NA,B =

∫
e−V/kBT gA,B(V )dV, (S27)

V A,B =
1

NA,B

∫
V e−V/kBT gA,B(V )dV , (S28)

UA,B = −kBT ln

∫
e−V/kBT gA,B(V )dV , (S29)

sexA,B =
2 (1− φv)

(
V A,B − UA,B

)
T

. (S30)

which satisfy N = NA + NB . These equations evaluate
to

NA =
G0kBT

∆V
e−V0/kBT (1− e−∆V/kBT ), (S31)

V A = V0 + kBT −
∆V

e∆V/kBT − 1
, (S32)

UA = V0 − kBT ln

[
G0kBT

∆V

(
1− e−∆V/kBT

)]
, (S33)

sexA = 2kB (1− φv)
{

1 + ln

[
G0kBT

∆V

(
1− e−∆V/kBT

)]
− ∆V

kBT

1

e∆V/kBT − 1

}
, (S34)

and

NB = (1−G0)e−(V0+∆V )/kBT , (S35)

V B = V0 + ∆V, (S36)

UB = V0 + ∆V − kBT ln (1−G0), (S37)

sexB = 2kB (1− φv) ln (1−G0). (S38)

Then, sex can alternatively be calculated using the stan-
dard expression for two-state systems:

sex = XsexA +(1−X)sexB −XkB lnX−(1−X)kB ln (1−X),
(S39)

where X = NA/N = NA/(NA +NB) is the probabilistic
weight of component A. Equation (S39) also evaluates to
Eq. (S23) after some algebra. In Eq. (S39), the first two
terms are the contributions of the two components alone.
The remaining terms are the entropy due to the mixing of
the components, which approaches 0 for X approaching
0 or 1.

Consider G0 � 1 corresponding to the regime relevant
to fragile glasses. Eqs. (S31) and (S35) gives

NA
NB

=
G0kBT

∆V
e∆V/kBT (1− e−∆V/kBT ). (S40)
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Then

NA
NB

=

{
0 for T →∞
∞ for T → 0

(S41)

and hence

X =

{
0 for T →∞
1 for T → 0.

(S42)

Physically, component A corresponds to the low energy
states important at low T while component B corre-
sponds to the numerous states important at high T .
Equation (S39) then implies

sex =

{
sexB (T →∞) = 0 for T →∞
sexA (T → 0) for T → 0

(S43)

where Eq. (S38) is also used. At T → 0, Eq. (S34) sim-
plifies to

sexA (T → 0) = 2kB (1− φv)
[
1 + ln

(
G0kBT

∆V

)]
, (S44)

and we have considered kBT � ∆V for simplicity.
At small G0 and low T , due to the lnG0 dependence,
sexA (T → 0) is small and hence sex is also small. This
explains the dramatic drop of sex from 0 as T decreases
at small G0.

VI. BICOMPONENT INTERACTION
DISTRIBUTION AND BOND EXCITATION

MODEL

Note that the bicomponent g(V ) in Eq. (2) is fully
analogous to a bond excitation model, also called the two-
state model, of glass proposed in Ref. [18], which consid-
ers microscopic states suggested as particle bonds taking
either a low-entropy unexcited state or a high-entropy
excited state. Although our component A is a band of

states, the energy spread becomes narrow at low T and
this contributes to the similarity between the models. In
Ref. [18], the entropy difference ∆S0 and the enthalpy
difference ∆H0 between excited and unexcited state are
the fitting parameters for the entropy for different mate-
rials. In our model, we can calculate ∆S0 and ∆H0 as
follows. By dividing Eqs. (S34) and (S38) by 2(1 − φv),
we get the entropy per bond for the unexcited and ex-
cited state respectively. The entropy difference ∆S0 is
then ∆S0 = (sexB − sexA )/[2(1− φv)], which gives

∆S0 = kB

{
ln

[
(1−G0)

G0(1− e−∆V/kBT )

∆V

kBT

]
+

∆V

kBT

1

e∆V/kBT − 1
− 1

}
. (S45)

On the other hand, ∆H0 is simply given by ∆H0 = V B−
V A. Using Eqs. (S32) and (S36),

∆H0 = kBT

[
∆V

kBT

(
1 +

1

e∆V/kBT − 1

)
− 1

]
. (S46)

For the fragile glass with G0 = 0.01 and E0 = 0,
our DPLM simulations give Tg ' 0.163. Noting that
kB = ∆V = 1, Eqs. (S45) and (S46) give ∆S0/kB = 5.42
and ∆H0/kBTg = 5.15 at T = Tg. This can be com-
pared with the fragile glass of toluene for example. By
fitting to experimental results on entropy measurements,
the bond excitation model gives ∆S0 = 45.4 J/mol·K
and ∆H0 = 6760 J/mol, expressed in terms of per mole
of excitable states [18]. Taking kB = 8.315 J/mol·K
and Tg = 117 K, they lead to ∆S0/kB = 5.46 and
∆H0/kBTg = 6.95. Toluene is considered because this
value of ∆S0/kB matches the value 5.42 from DPLM sim-
ulations. The consistency of the value of ∆H0/kBTg =
6.95 with the DPLM result of 5.15 then provides an ad-
ditional support of the close relation between the bond
excitation model and the DPLM with the bicomponent
form of g(V ).
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