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Kovacs effect is a characteristic feature of glassy relaxation. It consists in a non-monotonic
evolution of the volume (or enthalpy) of a glass after a succession of two abrupt temperatures
changes. The second change is performed when the instantaneous value of the volume coincides
with the equilibrium one at the final temperature. While this protocol might be expected to yield
equilibrium dynamics right after the second temperature change, the volume instead rises and
reaches a maximum, the so-called Kovacs hump, before dropping again to the final equilibrium
value. Kovacs effect constitutes one of the hallmarks of aging in glasses. In this paper we reproduce
all features of the Kovacs hump by means of the Distinguishable Particles Lattice Model (DPLM)
which is a particle model of structural glasses.
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INTRODUCTION

Kovacs’ series of experiments [1] is fundamental to our
present understanding of non-equilibrium glassy dynam-
ics [2–4] highlighting the non-linear features of aging. Ko-
vacs [1] thoroughly analyzed the volume relaxation dy-
namics of polymer glasses induced by rapid temperature
changes, or temperature jumps. Two important results
are the expansion gap paradox [5–12] and the renowned
Kovacs effect [13–20], for single- and double-temperature
jumps respectively. The former refers to an apparent dif-
ference in the instantaneous relaxation time near equi-
librium, between heating (up-jump) and cooling (down-
jump), after a single temperature change is performed.
On the other hand, Kovacs effect shows that the instan-
taneous value of the volume (or enthalpy [21, 22]) during
the relaxation, is not a sufficient indicator of the depar-
ture from equilibrium of the system. After a first temper-
ature jump from the initial temperature Ti to the anneal-
ing temperature Ta (with Ta < Ti), the relaxation can be
interrupted when the observable reaches the equilibrium
value characteristic of a third final temperature Tf by a
second temperature jump from Ta to Tf (with Ta < Tf <
Ti): One observes a non-monotonic evolution of the ob-
servable that reaches a maximum (i.e. Kovacs hump)
before relaxing back to the already-attained equilibrium
value. Most existing works have focused on reproduc-
ing the Kovacs effect by means of finite-dimensional
and mean-field spin-glass models [13, 15, 23], ordered
XY and Ising models [14, 23, 24], molecular dynam-
ics [16], kinetically constrained models (KCMs) [17, 18]
and simple two-level systems [19, 20]. Mean-field con-
stitutive models have also been used, most notably the
Tool-Narayanaswamy-Moynihan [25–27] and the Kovacs-
Aklonis-Hutchinson-Ramos [28] models, as well as those
accounting for spatial fluctuations of observables, such as

a stochastic version of a free-volume model [29] and the
Stochastic Constitutive Model (SCM) [30].

We reproduce all the features of Kovacs effect using
the recently developed Distinguishable Particles Lattice
Model (DPLM) [31]. The phonon temperature, which is
subjected to two consecutive jumps, is modeled by the
bath temperature of the kinetic Monte Carlo simulation
of the DPLM. It has been shown that the DPLM displays
many features of the particles dynamics of glass form-
ers with exactly known equilibrium properties [31, 32].
In particular, we have been able to reproduce, for the
first time with a particle model, the expansion gap para-
dox [33], and provide an intuitive explanation in terms of
a local structural temperature whose dynamics is spatially
unstable in the up-jump case. Furthermore, the DPLM
allows for a tuning of the kinetic fragility [32] over a very
wide range of values, which can be, in principle, arbi-
trarily large. The relation between kinetic and thermo-
dynamic fragility correctly captures several experimental
features as well. It has also been possible to obtain an
approximate analytical expression for the particle mean
squared displacement [34, 35] for this model.

We observe the characteristic Kovacs hump during the
system energy relaxation, analogous to enthalpy relax-
ation in experiments [21, 22]. This paper demonstrate
the ability of the DPLM to reproduce experimental sig-
natures of glassy systems observed in Kovacs’ experi-
ments [1]. We demonstrate that, while correctly repro-
ducing the expansion gap [33], the DPLM is also able to
capture the Kovacs effect. To the best of our knowledge
only two constitutive models, namely the SCM [30] and
the free-volume model [29], have been shown to repro-
duce both effects.
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MODEL DEFINITION

We simulate the DPLM [31] defined on a 2-dimensional
lattice of linear size L = 100 where the sites are occupied
by N distinguishable particles, each of them associated
to a unique label si = 1, . . . , N . An important property
of the model is that each particle is coupled to its nearest
neighbors by means of site- and labels-dependent random
interactions: Considering the interaction energy associ-
ated to the particles sitting at sites i and j, with labels
si and sj , one has a four-indices quantity Vijsisj . In or-
der to simulate the hopping of particles we consider the
presence of Nv = 50 voids, i.e. given that L2 = N + Nv

one has a void density φv = Nv/L
2 = 0.005. One can

write the energy of the system as

E =
∑
〈ij〉′

Vijsisj , (1)

where the sum
∑
〈ij〉′ is restricted to the couples of neigh-

boring sites occupied by particles only. The entire set of
all possible couplings {Vijkl} is drawn according to an a
priori probability distribution g(V ) and it is quenched,
whereas the set of the realized interactions {Vijsisj}, i.e.
the interaction energies directly contributing to a given
configuration of particles on the lattice, is distributed ac-
cording to a different function which at equilibrium it is
proved to be [31]

peq(V, T ) =
1

N (T )
g(V ) e−V/kBT , (2)

where N (T ) is a normalization constant. In the following
we adopt natural units, hence kB = 1. Several choices
are possible for the a priori distribution g(V ) and in this
work we adopted the same model as in [31], and hence
g is a uniform distribution defined on the closed interval
V ∈ [V0, V1], with V1 = −V0 = 0.5. The equilibrium
sampling is performed by means of a kinetic Monte Carlo
for activated hopping dynamics. Each particle can hop
to the position of a neighboring void with a rate

w = w0 exp

[
− 1

T

(
E0 +

∆E

2

)]
, (3)

where ∆E is the energy change of the system induced
by the hop. We set w0 = 106 and E0 = 1.5 so that
E0 + ∆E/2 ≥ 0.

RESULTS

In this work we study the relaxation dynamics of the
system energy (1), which is akin to the enthalpy relax-
ation [21, 22]. Following [1] we study the fractional de-
parture from equilibrium defined as the ratio

δE(t) =
E(t)− E∞
|E∞|

, (4)

0.2

0.24

0.28

0.32

t0 ta

Ti

Ta

Tf

(a)

stage 1 stage 2 stage 3

−0.54

−0.52

−0.50

−0.48

−0.46

(t < t0)

(b)

101 102 103

(t0 < t < ta)

10−1 101 103
E∞

Ei

(t > ta)

T
E

t t− t0 t− ta

FIG. 1: Schematic of the memory protocol: Panels (a) and
(b) report the three stages of the protocol for the temperature
and energy respectively. Stage 1: The system starts from
equilibrium at the initial temperature Ti = 0.3125. Stage 2:
At time t0 the temperature jumps to Ta < Ti (down-jump)
and the energy relaxes. Stage 3: At time ta the instantaneous
value of the energy equals the equilibrium one at the final
temperature Tf , i.e. E(ta) = E∞ and the second temperature
jump to Tf > Ta (up-jump) is performed. The energy shows
a non-monotonic behavior passing trough a maximum and
relaxing back to the final equilibrium value. The black solid
line reports the energy relaxation after a single down-jump
with same Ti and Tf .

where E∞ is the equilibrium energy at the final temper-
ature Tf and E(t) is the instantaneous value according
to (1). Averages have been computed over a thousand
independent runs with different initial random seeds.
The two-temperatures protocol is somewhat more com-
plicated than the single-jump one, and it is reported for
clarity in Fig. 1. The protocol can be divided in three
stages: During the first stage, for t < t0, the system is
at equilibrium at the initial temperature Ti, with a con-
stant energy Ei (see Fig. 1); the second stage begins at t0
when the temperature is changed to the annealing value
Ta, with Ta < Ti (down-jump), and the energy decreases
(see Fig. 1); the third stage begins at ta when the energy
reaches the value E(ta) = E∞, i.e. the equilibrium en-
ergy at the final temperature Tf , and the temperature is
changed once more to the final value Tf , with Ta < Tf
(up-jump) and Tf < Ti. The hallmark of glassy dynamics
in the third stage consists of the non-monotonic evolution
of the energy that reaches a maximum, i.e. the Kovacs
hump, and relaxes back to the same value already at-
tained at ta, rather than following a steady evolution at
the final temperature Tf with an equilibrium value E∞.

Following [1] we analyze the two-temperatures jump
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dynamics for different values of the annealing tempera-
ture Ta while keeping constant the initial Ti = 0.3125 and
final Tf = 0.25 values. In Fig. 2 we report the data com-
ing from the final relaxation during the third stage of the
protocol. Two features of the Kovacs hump are related to
the value of Ta: The peak position and its height. Fig. 2
shows that for lower values of the annealing temperature
Ta the peak is higher and it is reached at an earlier time,
which agrees with what has been observed in [1]. In the
DPLM the equilibrium distribution of the interaction en-
ergies is given by Eq. (2) which holds at the end of the re-
laxation, i.e. it is the long time limit of the instantaneous
distribution p(V, t). At the final temperature Tf Eq. (2)
yields E∞ as average energy, i.e. E∞ =

∑
〈ij〉′〈Vijsisj 〉Tf

.
Hence, at the end of the annealing stage ta, the instanta-
neous probability distribution p(V, ta) only yields an av-
erage value which coincides with that of peq(V, Tf ), but
the two distributions are quantitatively different. Hence,
the Kovacs hump is due to the further relaxation of the
instantaneous distribution p(V, t) towards peq(V, Tf ) for
t > ta.

CONCLUSIONS

In the present work we show that the DPLM is able
to capture the phenomenology of the Kovacs effect. This
is done rather naturally in DPLM without any modifica-
tion to its original definitions [31]. Important features of
Kovacs’ non-equilibrium dynamics automatically emerge
in the DPLM. It will be interesting to investigate other
phenomena where non-equilibrium effects dominate the
relaxation behavior of glasses: Ongoing studies of calori-
metric spectroscopy reproducing several features of α and
β peaks, and of the heat capacity overshoot and hystere-
sis in time-modulated differential scanning calorimetry,
are yielding results consistent with experiments and will
be reported elsewhere.
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FIG. 2: Dynamics of δE for the Kovacs’ memory protocol [see
Fig.1]. Initial Ti = 0.3125 and final Tf = 0.25 temperatures
are fixed and different annealing temperatures are simulated:
The peaks height is the largest and the peak appears the ear-
liest for the lowest annealing temperature Ta = 0.1875. The
higher Ta the smaller the peak and the later its position. The
black solid line reports the energy relaxation after a single
down-jump with same Ti and Tf . These features are consis-
tent with what observed in [1].
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