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The Kovacs effect is a remarkable feature of the ageing dynamics of glass forming liquids near
the glass transition temperature. It consists in a non-monotonous evolution of the volume/enthalpy
after a succession of two abrupt temperature changes: first from a high initial temperature Ti

to a much lower annealing temperature Ta followed by a smaller second jump back to a slightly
higher final temperature Tf . The second change is performed when the instantaneous value of the
volume/enthalpy coincides with the equilibrium one at the final temperature. While this protocol
might be expected to yield equilibrium dynamics right after the second temperature change, one
observes the so-called Kovacs hump in glassy systems. In this paper we apply such thermal protocol
to the Distinguishable Particles Lattice Model (DPLM) for a wide range of fragility of the system.
We study the Kovacs hump based on energy relaxation and all main experimental features are
captured. Results are compared to general predictions based on a master equation approach in
the linear response limit. We trace the origin of the Kovacs hump to the non-equilibrium nature
of the probability distribution of particle interaction energies after the annealing and find that
its difference with respect to the final equilibrium distribution is non-vanishing with two isolated
zeros. This allows Kovacs’ condition of equilibrium total energy to be met out-of-equilibrium, thus
representing the memory content of the system. Furthermore, the hump is taller and occurs at a
larger overlap with the system initial configuration for more fragile systems. The dynamics of a
structural temperature for the mobile regions strongly depends on the glass fragility while for the
immobile ones only a weak dependence is found.
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INTRODUCTION

Nonlinearities in the aging dynamics are a hallmark
of glassy systems. Kovacs’ series of experiments [1] is
one of the cornerstones on which our present understand-
ing of glassy dynamics is rooted [2–4]. Kovacs’ work [1]
thoroughly analyzed the volume relaxation dynamics of
polymer glasses (PVAc) by performing abrupt tempera-
ture changes, or temperature jumps. Two important re-
sults of these analyses are the renowned Kovacs effect [5–
12] and the expansion gap paradox [13–20], for double-
and single-temperature jumps respectively. The expan-
sion gap paraodox refers to an apparent difference in the
instantaneous relaxation time τeff near equilibrium, be-
tween heating (up-jump) and cooling (down-jump), after
a single temperature change is performed: while for the
down-jump case the values of τeff converge at equilib-
rium, independently on the initial temperature, for the
up-jump case the data display a dependence on the ini-
tial condition even near the end of the relaxation. On
the other hand, the Kovacs effect shows how the instan-
taneous value of the volume (or enthalpy [21, 22]) during
the relaxation, is not a sufficient indicator of the depar-
ture from equilibrium of the system. After a first tem-

perature jump from the initial temperature Ti to the an-
nealing temperature Ta (with Ta < Ti), the relaxation is
interrupted when the observable reaches the equilibrium
value of a third final temperature Tf , identifying the an-
nealing time ta. A second temperature jump from Ta to
Tf (with Ta < Tf < Ti) is then performed. One observes
a non-monotonous evolution, rather than a constant one,
of the already-attained equilibrium value (see Fig. 1).
The Kovacs effect has been studied by means of finite-
dimensional and mean-field spin-glass models [5, 7, 23],
ordered XY and Ising models [6, 23, 24], molecular dy-
namics [8], kinetically constrained models (KCMs) [9, 10]
and simple two-level systems [11, 12]. Also mean-field
constitutive models have been used, most notably the
Tool-Narayanaswamy-Moynihan (TNM) [25–27] and the
Kovacs-Aklonis-Hutchinson-Ramos (KAHR) models [28],
and those accounting for fluctuations of observables such
as a stochastic version of a free-volume model [29] and
the Stochastic Constitutive Model (SCM) [30]. Recently,
the Kovacs effect has also been investigated in granular
fluids [31, 32], disordered mechanical systems [33] and in
active matter suspensions [34] demonstrating how such
memory effect offers an interesting window into the dy-
namics of a wide variety of physical systems.
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We reproduce all the features of Kovacs effect using
the recently developed Distinguishable Particles Lattice
Model (DPLM) [35]. The phonon temperature, which is
subjected to two consecutive jumps, is modeled by the
bath temperature of the kinetic Monte Carlo simulation
of the DPLM. We observe the characteristic Kovacs hump
during the system energy relaxation, analogous to en-
thalpy relaxation in experiments [21, 22, 36]. We study
several features and rescaling properties of the Kovacs
hump [7, 12, 31] while probing the linear response regime.
We are able to identify the memory content of the system
by means of the instantaneous distribution of the particle
interaction energies p(V, t). In particular we identify the
out-of-equilibrium features of p(V, t) at time ta after the
annealing by means of the difference with respect to the
final equilibrium distribution, i.e. p(V, ta) − peq(V, Tf ).
The latter quantity displays two zeros allowing the sys-
tem to reach the same final equilibrium value of the en-
ergy while being out-of-equilibrium. Furthermore, a re-
cent version of DPLM [37] allows us to investigate the
interplay between Kovacs effect and fragility [38]: as the
fragility increases, the hump height increases and so is
the associated fraction of particles retaining the initial
positions, i.e., the overlap q [39]. Finally, by parametriz-
ing the system evolution by means of q, we can clearly
show fragility-dependent features of the dynamics based
on a structural temperature [39].

Recent works show that the DPLM displays many fea-
tures of the particle dynamics of glass formers and offers
the possibility of performing exact equilibrium calcula-
tions of the free-energy [35, 37]. In particular, the DPLM
is the first particle model to successfully reproduce, the
expansion gap paradox [39], providing an intuitive expla-
nation in terms of a local structural temperature whose
dynamics is spatio-temporally unstable in the up-jump
case. Furthermore, the DPLM allows for controlling the
kinetic fragility [37] over a very wide range of values of the
fragility index. The relation between kinetic and thermo-
dynamic fragility correctly captures several experimental
features as well. It has also been possible to obtain an
analytical expression for the particles Mean Squared Dis-
placement (MSD) [40, 41] which is in good agreement
with simulation results.

The results of this paper convey a comprehensive pic-
ture of the ability of the DPLM to reproduce experi-
mental signatures of glassy systems observed in Kovacs’
experiments [1]. It is a major challenge to study a wide
range of glassy phenomena in a unified framework based
on a consistent set of assumptions. We demonstrate that,
while correctly reproducing the expansion gap [39], the
DPLM is also able to capture the Kovacs effect. To the
best of our knowledge only phenomenological constitu-
tive models, namely the SCM [30] and the free-volume
model [29], have been shown to reproduce both effects.
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FIG. 1: Schematic presentation of the memory protocol for
G0 = 0.1: Panel (a) and (b) report the three stages of the pro-
tocol for the temperature and energy respectively. Stage 1:
The system starts from equilibrium at the initial temperature
Ti (see values in Table I). Stage 2: At time 0 the first tem-
perature jump to Ta < Ti (down-jump) is performed and the
energy relaxes. Stage 3: At time ta the instantaneous value
of the energy coincides with the equilibrium one at the final
temperature Tf , i.e. E(ta) = E∞ and the second tempera-
ture jump to Tf > Ta (up-jump) is performed. The energy,
represented by the solid line, has a nonmonotonic behavior
passing through a maximum and relaxing back to the final
equilibrium value. The dashed line reports the energy relax-
ation for a single down-jump directly to Tf .

MODEL DEFINITION

We simulate the DPLM [35, 37] defined on a two-
dimensional lattice of linear size L = 100 where the sites
are occupied by N distinguishable particles, each of them
associated to a unique label si = 1, . . . , N . An important
property of the model is that each particle is coupled to
its nearest neighbors by means of label-dependent random
interactions: considering the interaction energy associ-
ated to the particles sitting at sites i and j, with labels
si and sj , one has a two-indices quantity Vsisj . In order
to simulate the hopping of particles we consider the pres-
ence of Nv = 100 voids, i.e. given that L2 = N +Nv, one
has a void density φv = Nv/L

2 = 0.01. One can write
the energy of the system as

E =
∑
〈ij〉′

Vsisj , (1)

where the sum
∑
〈ij〉′ is restricted to the couples of neigh-

boring sites occupied by particles only. The entire set of
all possible couplings {Vkl} is drawn according to an a
priori probability distribution g(V ) and it is quenched,
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G0 1.0 0.7 0.3 0.1

mk 7.52 9.07 13.05 18.97

mt 0.93 0.99 1.49 2.26

Tg 0.149 0.199 0.246 0.228

Ti 0.165 0.219 0.270 0.251

Tf 0.152 0.202 0.249 0.232

β 0.605(3) 0.598(2) 0.550(1) 0.461(2)

τ 13.3(1) 14.5(1) 20.7(1) 34.8(3)

TABLE I: In the first three rows we report the values of the
kinetic and thermodynamic fragility indicesmk andmt as well
as Tg as obtained in [37]. The initial and final temperatures
are denoted by Ti and Tf . The stretching exponent β and
the characteristic time τ in the last two rows are the results
of the fits of the normalized single down-jump relaxation ϕ(t)
(see Fig. 2) to the KWW function (6).

whereas the set of the realized interactions {Vsisj}, i.e.
the interactions energies in a given configuration of parti-
cles on the lattice, is distributed according to a different
function which at equilibrium is proved and numerically
verified to be [35, 37, 39]

peq(V, T ) =
1

N (T )
g(V ) e−V/kBT , (2)

where N (T ) is a normalization constant. Several choices
are possible for the a priori distribution g(V ) and in this
work we adopted the same model as in [37], and hence g
is given by

g(V ) =
G0

V1 − V0
+ (1−G0)δ(V − V1) , V ∈ [V0, V1], (3)

with V1 = −V0 = 0.5. Here, G0 ∈ (0, 1] is a ther-
modynamic parameter for tuning the fragility [37]. For
G0 = 1, g(V ) reduces to a simple uniform distribution
which makes the system a strong glass, while when G0

tends to zero, the system becomes increasingly fragile
[37]. In the following we adopt natural units, hence
kB = 1. The equilibrium sampling is performed by means
of a kinetic Monte Carlo approach using Metropolis dy-
namics. Each particle can hop to the position of a neigh-
boring void, more precisely representing a recently iden-
tified quasi-particle referred to as a quasivoid [42], with
a rate

w =

{
w0 exp (−∆E/T ) for ∆E > 0,

w0 for ∆E ≤ 0,
(4)

where ∆E is the energy change of the system induced by
the hop. We set w0 = 106.
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FIG. 2: Normalized energy relaxation during down-jumps
with fitting to the KWW function (6) (dashed lines). Fit-
ted parameters are reported in Table I.

SIMULATIONS RESULTS AND ANALYSIS

In this work we study the relaxation dynamics of the
system energy (1) which is akin to the enthalpy relax-
ation [21, 22]. Averages have been computed over a few
thousands independent runs with different initial random
seeds. The two-temperatures protocol is somewhat more
convoluted than the single-jump one, and it is reported
for clarity in Fig. 1. The protocol can be divided into
three stages: during the first stage, for t < 0, the system
is at equilibrium at the initial temperature Ti, with a con-
stant energy Ei; the second stage begins at t = 0 when
the bath temperature is changed to the annealing value
Ta, with Ta < Ti (down-jump), and the energy decreases
gradually; the third stage begins at ta when the energy
reaches the value E(ta) = E∞, in coincidence with the
equilibrium value at the final temperature Tf , and the
temperature is changed once more to the final value Tf ,
with Ta < Tf (up-jump) and Tf < Ti. The hallmark of
glassy dynamics in the third stage consists in the non-
monotonous evolution of the energy that reaches a max-
imum, i.e. the Kovacs hump, and relaxes back to the
same value already attained at ta, rather than remaining
as a constant at the equilibrium value E∞ for the final
temperature Tf .

We set the initial-to-glass temperature ratio Ti/Tg '
1.10 and the final-to-glass temperature ratio Tf/Tg '
1.01, with Tg the fragility-dependent glass transition
temperature [37]. The ratios are chosen to match
the values used in experiments [36]. Finally, for
the annealing temperature Ta we select five differ-
ent anneal-to-final temperature ratios θa = Ta/Tf ∈
{0.995, 0.990, 0.980, 0.960, 0.920} in order to explore the
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FIG. 3: Panels (a) to (d): Kovacs hump for four different values of G0, while those connected by dashed lines represent the
single down-jump data. The highest peak corresponds to the lowest annealing temperature Ta = θaTf . The linear response
prediction is reported as solid lines (only for θa ≥ 0.960). Time is rescaled by 〈τ〉 = 4τ/π which depends only on G0. Panels
(e) to (h): Kovacs hump normalized by its maximum Kmax versus normalized time (t− ta)/(tk − ta) with tk being the time of
the peak: data for different annealing temperature mostly superpose onto a single curve, with some deviations due to a strong
sensitivity on even a small discrepancy from Kovacs’ condition of E(ta) = E∞ for the highest Ta.

linear response regime of the system. Given the final-
to-glass temperature ratio Tf/Tg ' 1.01 it follows that
the last three values of the annealing temperature are
below Tg. As for the tuning of the fragility we use four
different values of the parameter G0 ∈ {1.0, 0.7, 0.3, 0.1}
yielding a fairly wide range of variation. We report in Ta-
ble I the corresponding values for the kinetic (mk) and
thermodynamic (mt) fragility indices as well as the glass
transition temperature Tg. As detailed in [37], Tg is com-
puted as the temperature at which the particles diffusion
coefficient matches the reference value Dr = 10−1, the
smallest value we can adopt in our simulations. How-
ever, smaller and more realistic values of Dr would yield
a larger fragility, compatible with the experimental scale.
The simulations of the memory protocol are set up by
first performing single down-jump simulations from Ti to
Ta in order to interpolate the time value ta at which the
average energy matches the equilibrium value at Tf , i.e.
E(ta) = E∞. Then, the simulations are restarted keep-
ing the same initial random seeds and using the two-
temperatures protocol so that at ta we set T = Tf in
order to analyze Kovacs’ hump. This procedure allows
us to analyze the linear response regime [12, 43] which is
very sensitive to discrepancies between E(ta) and E∞.

Single-jump relaxation

Let us begin by studying the properties of the single
down-jump relaxation for the four different values of G0.
Following [12, 43] we use the fractional departure from
equilibrium defined as the ratio

ϕ(t) =
E(t)− E∞
E(0)− E∞

, (5)

where E∞ is the equilibrium energy at the final temper-
ature Tf and E(t) is the instantaneous value according
to (1). Given its definition it follows that 0 ≤ ϕ(t) ≤ 1.
We fit ϕ(t) by means of the Kohlrausch-Williams-Watts
(KWW) function [44–46]

ϕKWW(t) = exp[− (t/τ)
β
], (6)

and report the results in Table I. We plot the relaxation
of ϕ(t) in Fig. 2 as a function of t. The results of the fits
to Eq. (6) is reported in dashed lines. Different fragilities
yield curves that would not superpose by simple time
rescaling since they are described by KWW functions
with different stretching exponents β. The results of
these fits will be used in the linear response regime anal-
ysis described below.
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Kovacs hump

We describe the memory dynamics by means of a nor-
malized function K(t) for the double-jump relaxation for
t > ta

K(t) =
E(t)− E∞
E(0)− E∞

, (7)

with a similar definition as ϕ(t) for single-jump relaxation
in Eq. (5). We report in Fig. 3(a), (b), (c) and (d) the
results for the four different values of G0 and the five
different annealing temperatures Ta given by the ratios
θa = Ta/Tf ∈ {0.995, 0.990, 0.980, 0.960, 0.920}, against
(t − ta) rescaled by 〈τ〉 = 4τ/π [43]. As observed in
experiments [1, 36] the maximum height of the hump,
Kmax, grows as the annealing temperature Ta lowers, and
its time of occurrence tk, shifts to smaller values closer to
ta. On the other hand, the effect of the fragility results
in an earlier convergence [38] to the single down-jump
curves reproduced here from Fig. 2. In Fig. 3(e), (f),
(g) and (h) we report the same curves in log-log scales
normalized by Kmax and with time rescaled by tk − ta,
where tk is the time when the peak occurs: one can see a
convergence to a similar hump shape independent of the
annealing temperature [12] for each value of G0.

Let us now briefly introduce the linear response anal-
ysis proposed in [12]: it has been shown that for systems
whose dynamics can be modeled by a master equation,
there exist an analytic prediction for the shape of the
hump K(t) as a function of the single down-jump relax-
ation ϕ(t) in the linear response regime. In particular,
the exact expression reads [12, 43]

K(t) =
ϕ(t)− ϕ(ta)ϕ(t− ta)

1− ϕ(ta)
. (8)

As one can see from Fig. 3(a), (b), (c) and (d) the
solid lines computed from (8) using parameters from the
KWW fits (see Table I), show a good match to the hump
data (for θa ≥ 0.960). The agreement, however, worsens
for lower values of the annealing temperature Ta and for
smaller values of G0, i.e. for more fragile systems. In
both cases the nonlinear effects are enhanced, thus ex-
plaining the departure from Eq. (8). Furthermore, we
studied the dependence of the hump height Kmax on the
annealing time ta [43] by computing the maximum of (8)
and comparing it to our simulations. The results are re-
ported in Fig. 4 displaying a good agreement with the lin-
ear response predictions (dashed lines) for higher anneal-
ing temperatures independently of the value of G0. Inter-
estingly, these results fall in a similar range of values as
those obtained for the one-dimensional Ising model [43].
Indeed, the DPLM data seem compatible with a power-
law scaling between Kmax and ta, but in the case of the
present study, the range of values is not sufficiently large
to establish the scaling reliably.
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FIG. 4: The hump peak height Kmax against normalized an-
nealing time ta/〈τ〉 in log-log scales for four values of G0;
dashed lines represent linear response result computed from
Eq. (8).
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FIG. 5: Sequence of ∆p(V, t) (see Eq. (10)) for the down-
jump dynamics at three different time t, all displaying only
one isolated zero.

Memory Encoded in Particle Interactions

Let us look at the system from the perspective of
the probability distribution p(V, t) of the realized inter-
actions Vsisj among particles at time t, which has re-
vealed detailed information about the state of the sys-
tem in previous studies [35, 39]. By definition, at the
initial and the final states, such distribution coincides
with the equilibrium one, i.e., p(V, 0) = peq(V, Ti) and
p(V,∞) = peq(V, Tf ). We now examine its detailed evo-
lution. For the sake of the discussion we will consider
G0 = 1, but similar arguments can be used for G0 < 1.
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FIG. 6: (a): Sequence for the double-jump (memory) protocol
for four different time t. For t � ta, ∆p displays only one
isolated zero, with a second one appearing at t = ta. For
t � ta, the case of a single isolated zero is restored. The
green dashed line represents peq(V, Ta) − peq(V, Tf ). (b): ∆p
at t = ta for different values of annealing temperature Ta =
θaTf .

Let us define

∆p(V, t) = p(V, t)− peq(V, Tf ), (9)

which displays the difference of the distribution p(V, t)
with respect to the final equilibrium distribution at Tf .

We first study the simple case of a single temperature
jump from Ti to Tf , the relaxation of which has already
been depicted in Fig. 2. We report in Fig. 5 the evolu-
tion of ∆p(V, t). We observe that at all time t, ∆p(V, t)
is positive for V & −0.37 and negative for V . −0.37,
indicating that the distribution p(V, t) is skewed towards
high energy interactions compared with peq(V, Tf ) due
to the high initial temperature Ti. Thus, the function
∆p(V, t) admits only one zero at V ' −0.37. During
cooling, ∆p(V, t) converges towards 0 for all V . To relate

to the relaxation of the total energy, we consider the dif-
ference ∆E(t) = E(t) − E∞ between the instantaneous
system energy E(t) and the equilibrium energy at Tf ,
analogous to definitions in Eqs. (5) and (7). It can be
expressed as

∆E(t) = 2N

∫
dV V∆p(V, t) (10)

where N is the number of particles in the systems and
we have assumed a small void density φv ' 0 for sim-
plicity. It is easy to see that a single isolated zero of
∆p(V, t) in Figure 5 indeed implies ∆E(t) > 0. To arrive
at ∆E(t) = 0, a necessary condition of equilibrium, one
then requires ∆p(V, t) ≡ 0 for all V , implying an equilib-
rium distribution peq(V, Tf ) of the interactions. Kovacs’
condition of E(t) = E∞ therefore only occurs at equilib-
rium at long time for the single-jump case.

We now return to our main focus of the double tem-
perature jump protocol. Figure 6(a) shows ∆p(V, t) for
θa = 0.92. The initial evolution is similar to the single
jump case. However, at ta, p(V, t) at large V has become
close to peq(V, Ta) (see green dashed line which shows
peq(V, Ta)−peq(V, Tf ) in Fig. 6(a)). The better equilibra-
tion towards Tf at large V is due to the generally faster
dynamics of the weakly bonded particles. As a result,
p(V, t) < 0 at large V , leading to two zeros of p(V, t) at
V̄L ' −0.41 and V̄H ' −0.09. Interestingly, the addition
of a zero allows the system to satisfy Kovacs’ condition
of ∆E(ta) = 0 even when ∆p(V, ta) 6≡ 0, as is explicitly
illustrated in Fig. 6(a). We also report in Fig. 6(b) the
data for higher values of Ta at θa = 0.92, 0.96 and 0.98
and are all consistent with having two isolated zeros. The
non-vanishing ∆p(V, ta) despite ∆E(ta) = 0 evidences a
non-equilibrium interaction distribution p(V, ta), which
is the microscopic origin of the material memory respon-
sible for the Kovacs hump.

In Fig. 6(a), we have also plotted ∆p(V, t) at t > ta
after the second temperature jump to Tf . For large V ,
∆p(V, t) rises to 0 rapidly. It corresponds to warming
of these overly-cooled interactions. This is the dominant
mechanism of the return of ∆E(t) to a positive value at
the Kovacs hump. It also restores the usual case of a
single isolated zero of ∆p(V, t) so that subsequent equili-
bration proceeds in a way similar to the single-jump.

Mobile and immobile particles

The DPLM allows us to study of the dynamics by
grouping particles according to their mobility. One can
measure the evolution of the system by introducing an
overlap parameter q(t) [39] which measures the fraction
of particles that are located at their initial position at
time t, hence 0 ≤ q(t) ≤ 1 with q(t) = 0 when all parti-
cles are away from their initial positions.
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FIG. 7: (a): Kmax against the fraction of immobile particles
qk = q(tk) at the peak of the hump. (b): fraction of immobile
particles qa = q(ta) against normalized annealing time ta/〈τ〉;
data superpose well for different fragilities, i.e. different values
of G0.

We plot in Fig. 7(a) the maximum of the hump
Kmax = K(tk) against the corresponding value of the
overlap qk = q(tk). As seen, Kmax scales with qk and the
strongest glass yields the largest value of the overlap qk.
The hump is taller with a larger qk, for lower annealing
temperatures.

Another possible comparison between the different sys-
tems can be obtained by looking at the overlap at the
annealing time qa = q(ta) as a function of ta. At this
time, for each value of G0, all systems are characterized
by the same average energy E∞. We report these results
in Fig. 7(b): the data collapse on the same curve indi-
cating that, for the prescribed rescaled annealing time
ta/〈τ〉, the ratio of mobile/immobile particles in the sys-
tem does not depend on the degree of fragility of the
system. It is possible to notice that, for a fixed value
of G0, a lower annealing temperature corresponds to a
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FIG. 8: Peak values of the Kovacs hump Kmax against the
kinetic fragility mk in (a), and thermodynamic fragility mt

in (b). From left to right the corresponding values of G0 are
0.1, 0.3, 0.7 and 1.0. Dashed lines connect points sharing the
same normalized annealing temperature θa = Ta/Tf .

larger qa and a smaller ta/〈τ〉, signaling that the faster
dynamics is driven by an increasingly smaller fraction of
mobile particles.

We conclude our analysis of the Kovacs hump by re-
porting in Fig. 8 the value of Kmax as a function of both
the kinetic and thermodynamic fragility indices mk and
mt [37], clearly showing a taller hump as the fragility in-
creases. To the best of our knowledge such an analysis is
lacking in the experimental literature. However, it would
be very interesting to examine if such a trend may exist
in experimental data.

Structural Temperature

Finally, we analyze the structural temperature [39]
TS , which, analogous to the fictive temperature, de-
scribes the effective temperature of the particle inter-
actions. It is computed by solving numerically E(t) =∫ V1

V0
dV V peq(V, TS(t)). In [39] it was shown that the lo-

cal value of TS strongly correlates with the mobility of
the particles. In order to compare systems at different
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FIG. 9: Panels (a) to (d): Normalized structural temperature
θS = TS/Tf for mobile regions as a function of the fraction of
mobile particles 1 − q; single down-jump relaxation data are
reported in black solid lines. Panel (e): Normalized structural
temperature for the immobile regions for different G0 and
annealing temperature Ta.

fragilities we use the ratio θS = TS/Tf and we study
its temporal evolution for both mobile and immobile re-
gions, using 1 − q as an evolution parameter that grows
as time passes, eventually reaching unity. Results are re-
ported in Fig. 9: panels (a), (b), (c) and (d) all display the
evolution of the structural temperature TS in the mobile
regions with a cusp at the value 1 − qa, corresponding
to the annealing time ta; panel (e) displays θS for the
immobile regions where, however, it is not possible to
notice any significant feature at 1 − qa. The evolution
of Ts at the mobile and immobile regions is due to both
particle motions in the mobile regions and the growth of
the mobile regions at the expense of the immobile ones
by shrinking their boundaries.

The cusps exhibited by the mobile particles indicates
the reheating of the overly cooled and weakly bonded

particles as explained above. In addition, one can see a
remarkable convergence of the dynamics of the immobile
regions independently on the value of G0. Values of θa
as low as 0.6 can be reached because, at the end of the
evolution of the immobile regions, mostly the lowest in-
teraction energies close to V0 will be left. At the end of its
evolution the immobile regions are mostly composed of
highly stable configurations, yielding a very low average
energy, hence a very low structural temperature.

CONCLUSIONS

In this paper we demonstrated the ability of the Dis-
tinguishable Particles Lattice Model (DPLM) to cap-
ture the main features of the Kovacs ageing dynamics.
In particular, we studied systems with different a pri-
ori distributions of the interaction energies (see Eq. (3))
which are related to different fragilities [37]: we ana-
lyzed the Kovacs memory dynamics in a broader range
of fragilities than what was previously done in the liter-
ature [38]. In this extended setting we studied in detail
the Kovacs memory response in the linear regime obtain-
ing a good agreement with the master equation approach
detailed in [12] for annealing temperature Ta satisfying
1− Ta/Tf = 1− θa ≤ 2× 10−2.

We identified the memory content of the system in the
features of the function ∆p(V, t) = p(V, t) − peq(V, Tf ),
i.e. the difference between the instantaneous distribution
and the final equilibrium one of the particle interaction
energies. In particular, after the annealing, ∆p(V, ta)
yields two zeros allowing the system to have the same
equilibrium energy as at Tf , i.e. E(ta) = E∞, while dis-
playing an out-of-equilibrium distribution. The subse-
quent heating of the system at Tf repopulates the overly
cooled high-energy part of the distribution yielding the
Kovacs hump and restoring the scenario of a single iso-
lated zero. At this point the relaxation continues as in
the simple down-jump case.

Further, we characterized the hump height Kmax from
a particle-mobility perspective. A clear correlation be-
tween Kmax and the fragility index, both kinetic and
thermodynamic, was provided. Also, the fraction of im-
mobile particles at the end of the annealing qa = q(ta)
was found to collapse to the same function of ta/〈τ〉,
independent of the fragility of the system. Finally, we
studied the dynamics of the structural temperature [39],
for both mobile and immobile regions, as a function of
the fraction of mobile particles 1−q: this illustrates that
the Kovacs’ hump is associated with the evolution of TS
in the mobile regions while the dynamics in the immobile
ones is weakly dependent on the fragility of the system.
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