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We propose an interacting lattice gas model of structural glass characterized by particle distin-
guishability and site-particle-dependent random nearest-neighboring particle interactions. This in-
corporates disorder quenched in the configuration space rather than in the physical space. The model
exhibits non-trivial energetics while still admitting exact equilibrium states directly constructible at
arbitrary temperature and density. The dynamics is defined by activated hopping following standard
kinetic Monte Carlo approach without explicit facilitation rule. Kinetic simulations show emergent
dynamic facilitation behaviors in the glassy phase in which motions of individual voids are signifi-
cant only when accelerated by other voids nearby. This provides a microscopic justification for the
dynamic facilitation picture of structural glass.

I. INTRODUCTION

Glassy dynamics still admits many open questions de-
spite decades of intensive studies1–3. When supercooled
below the glass transition temperature Tg, many liq-
uids can be quenched into the glassy phase, an amor-
phous solid-like state without long-range order. Molec-
ular dynamics (MD) simulations are able to capture
the dramatic slowdown4,5, but a thorough understand-
ing of the simulated dynamics also proves challenging.
The study of simplified lattice models6–13 is thus im-
portant. In particular, the p-spin model7 has inspired
the random first-order transition (RFOT) theory14,15,
a leading theory of glass. A potential issue in the p-
spin model however is that it assumes externally im-
posed quenched disorder rather than the expected self-
generated disorder, although a density functional Hamil-
tonian with self-generated disorder has also been used to
demonstrate RFOT16. Another promising theory is dy-
namic facilitation17–19 founded on kinetically constrained
models (KCM)8,9. An important example is a spin-
facilitation model by Fredrickson and Andersen (FA) in
which defects interpreted as low-density regions are al-
lowed to evolve only when facilitated by the presence of
adjacent defects8. A full microscopic justification of the
facilitation rules still remains a challenge.

In this work, we formulate a distinguishable-particle
lattice model (DPLM), which is a lattice gas model with
effectively infinitely many particle-types. This general-
izes other multi-species models for glass4,12,20. It also
models glassy systems in which most particles have dis-
tinct properties including polymers5, polydispersive col-
loidal systems21 and monodispersive systems in which
particle interactions admit random positional shifts22–24.
More generally, it is suggested to model also identical-
particle glassy systems in which distinct particle proper-
ties effectively account for the positional disorder of par-
ticles at sub-lattice resolutions. DPLM can be simulated
at arbitrary temperature and particle density realizing
physical systems ranging from dilute gases to glasses. In-
terestingly, the glassy phase exhibits dynamic facilitation
as an emergent property.

FIG. 1. (a) Schematic diagram of a region with distin-
guishable particles randomly colored. The arrows indicate
a possible sequence of hops by four particles arranged in a
line. The dynamics is equivalently described by four hops of
a single void in the reversed direction. (b) The particle dis-
placements alter the nearest neighbor pairings and hence the
pair interactions (indicated by black lines) along the whole
path.

II. MODEL

DPLM is defined by N particles on a 2D square lattice
of unit lattice constant and size L2 with periodic bound-
ary conditions. No more than one particle can occupy
each site. Each particle is distinguishable from the oth-
ers (see Fig. 1). For an occupied site i, the particle index
si = 1, 2, . . . , N denotes which particle is at site i. For
convenience, we let si = 0 if the site is unoccupied, i.e.
occupied by a void. The occupation number ni is hence

ni = 1− δsi,0 (1)

where δ is the Kronecker delta. The whole set of si,
rather than ni, uniquely specifies the state of our system.

The total system energy is defined as

E =
∑
<i,j>

Vijsisjninj (2)

where the sum is over all nearest neighboring (NN) sites.
It can be equivalently written as

E =
∑
<i,j>′

Vijsisj (3)

ar
X

iv
:1

60
8.

05
96

0v
2 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  2

0 
M

ay
 2

01
7



2

where the sum is restricted to bonded NN sites i and j,
i.e. with both sites occupied by particles.

A key feature is the site-particle-dependent interac-
tion energy Vijkl. Its dependence on particle indices k
and l means that each particle defines its own inter-
action strengths and this will be justified further. Ef-
fectively, each particle is a type of its own generaliz-
ing multi-species models. In DPLM, each Vijkl is time-
independent and is an independent variable following a
probability distribution g(Vijkl) except when the symme-
try Vijkl = Vjilk applies. We expect Vijkl to be bounded
below as in typical two particle interactions and thus
g(Vijkl) should not be for example a simple Gaussian. For
simplicity, g(Vijkl) is assumed to be the uniform distri-
bution in [−0.5, 0.5] which leads to a particle interaction
slightly attractive on average.

To better understand the time-dependence of the in-
teractions, it is instructive to write Eq. (3) as

E =
∑
<i,j>′

Vij(t) (4)

where Vij(t) ≡ Vijsisj . We emphasize that while each
interaction Vijkl for any given sites i and j and parti-
cles k and l is a quenched random variable, the interac-
tion Vij(t) at site i and j and arbitrary particles is not
quenched. Instead, Vij(t) admits an implicit time depen-
dence via si and sj , which are time dependent and change
in values when a particle at i or j is replaced. Equally
importantly, Vij(t) has no explicit time dependence. A
previous value can thus be exactly reinstated whenever a
previous local particle configuration as specified by si and
sj is restored via the return of the particles. We believe
that such particle-dependent local interactions with per-
sistent memory capture essential characteristics of struc-
tural glass. A further subtle point is that since Vij(t) de-
pends on time, the disorder in our model is not quenched
in the physical space, unlike spin-glass models6. Instead,
because of the time independence of Vijkl and that the
same interaction energy always applies to the same lo-
cal particle configuration, the disorder is quenched in the
configuration space.

This site-particle dependence in Vijkl is not necessar-
ily due to possible diverse particle properties. Instead,
it effectively account for the impacts of positional disor-
der at sub-lattice resolutions which are usually truncated
in lattice models. A particle at site i in a spatially dis-
ordered system in principle admits a small random off-
set ∆ri from the exact lattice point. This results in a
random deviation in the atomic separation rij between
the particles at sites i and j and hence also in the pair
interaction Vijkl. Rather than explicitly modeling the
disorder in ∆ri or rij , we directly consider the resulting
random fluctuations in the interaction by simply taking
a random Vijkl. The dependence on both site and par-
ticle indices models the random changes expected to be
induced by the hopping of any of the concerned particles
or of the whole pair. Realistically, there must also be

additional dependencies on further neighbors, which are
all neglected for simplicity.

Equilibrium states of DPLM are exactly solvable. In
particular, particle occupancies ni follow equilibrium
statistics the same as those of a standard identical-
particle lattice gas model with a constant interaction
energy. These will be explained in Appendix A. Fur-
thermore, equilibrium states of DPLM can be directly
constructed using those of standard lattice gas, which
exhibits no glassy slowdown (see Appendix B 5).

The dynamics of DPLM is defined by standard acti-
vated hopping approach for kinetic Monte Carlo simula-
tions. Specifically, to simulate the dynamics at tempera-
ture T , each particle can hop to an unoccupied NN site
at a rate25

w = w0 exp

(
−E0 + ∆E/2

kBT

)
(5)

where ∆E is the change in the system energy due to the
hop and kB = 1 is the Boltzmann constant. This def-
inition satisfies detailed balance. We let E0 = 1.5 so
that E0 + ∆E/2 ≥ 0. Also, we put w0 = 106 with-
out loss of generality. Particle motions can be equiva-
lently described as void motions (see Fig. 1). At temper-
ature T → ∞, DPLM reduces to a simple sliding block
model26.

III. GLASSY DYNAMICS

Let φv = 1 − φ be the void density where φ = N/L2

is the particle density in principle related physically to
the system pressure. We perform kinetic Monte Carlo
simulations of fully equilibrated systems at L = 100 at
various T and φv (see Appendix B for simulation meth-
ods). Standard dynamical measurements show that the
system behaves as a simple liquid at high T and φv
and a glass at low T and φv. As will be further ex-
plained, glassy behaviors are shown by the appearance
of a plateau in the particle mean square displacement
(MSD), a super-Arrhenius T dependence of the parti-
cle diffusion coefficient D, a stretched exponential form
of the self-intermediate scattering function decaying to-
wards zero at long time, a violation of the Stokes-Einstein
relation, and typical time and T dependences of a four-
point susceptibility. In particular, the convergence of the
self-intermediate scattering function towards zero rather
than a finite value at long time verifies that DPLM is
a model of structural glass, as opposed to for example
spin glass. For all T and φv studied, DPLM exhibits no
sign of ideal glass transition. It also appears ergodic as
supported, for example, by the divergence of the particle
MSD and the vanishing of the self-intermediate scatter-
ing function at long time.
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FIG. 2. (a) Particle mean square displacement (MSD)
against t in log-log scale for T = 0.170, 0.190, 0.216, 0.250,
0.296, 0.363, 0.470, 0.666, 1.142, 4.000 and void density
φv = 0.01 with the highest T at the top. (b) Arrhenius plot
of D for φv = 0.005, 0.008, 0.013, 0.021, 0.035, 0.056, 0.092,
0.149, 0.242, 0.392, with the highest φv at the top.

A. Diffusion coefficient

We calculate the MSD defined as
〈
|rl(t)− rl(0)|2

〉
where rl(t) denotes the lattice position vector of particle
l at time t. Figure 2(a) shows the MSD in a log-log plot
for different T and φv = 0.01. For t → ∞, the slopes
of the lines are consistent with unity, indicating diffu-
sive behavior over long observation time. Sub-diffusive
plateaus appearing at intermediate t at low T indicate
cage effects. Note that being a lattice model without vi-
brational modes at the sublattice level, the plateaus are
much less pronounced as have been found for other lattice
models10.

From similar MSD for various T and φv, we measure
the particle diffusion coefficient

D =
1

2d
lim
t→∞

〈
|rl(t)− rl(0)|2

〉
t

(6)

by fitting to data points where
〈
|rl(t)− rl(0)|2

〉
> 1

and the slope in the log-log plot is higher than 0.96.
Fig. 2(b) shows D in an Arrhenius plot for various φv. It
exhibits super-Arrhenius behavior which becomes more
pronounced at small φv and low T . This shows that
DPLM is a fragile glass.
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FIG. 3. (a) Decays of self-intermediate scattering function
Fs(q, t) in linear-log scale, for the same values of T used in
Fig. 2(a), with T decreasing from left to right. Wavenumber
q = (2π/L)q′ = π/5 and φv = 0.01 are used here. (b) Same
data as in (a) in log-log-versus-log scale. Data corresponding
to Fs(q, t) < 10−3 are noisy and are omitted. The slope of
the linear region at large t with 10−3 ≤ Fs(q, t) ≤ 0.9 gives
the stretching exponent β.

B. Self-intermediate scattering function

We have measured the self-intermediate scattering
function defined as

Fs(q, t) =
〈
eiq·(rl(t)−rl(0))

〉
(7)

and the result is shown in Fig. 3(a) for φv = 0.01 and q =
(2π/L)q′ with q′ = 10. A one-step drop of Fs(q, t) versus
t instead of a two-step decay is again typical for lattice
models10,12,27. In glassy systems, the terminal decay of
the scattering function is usually well approximated by
the Kohlrausch-Williams-Watts (KWW) stretched expo-
nential function of the form A exp

(
−(t/τ)β

)
, where τ

is a relaxation time and β (0 < β < 1) is the stretch-
ing exponent. Our results fit well to the KWW form for
large t. This is also demonstrated by the log-log plot of
− log(Fs(q, t)) against t in Fig. 3(b) which shows a lin-
ear region at large t expected from the KWW form with
A ' 1. The stretching exponent obtained from the slope
of the linear region is plotted in Fig. 4(a). As T de-
creases, β drops from 1 to around 0.82, indicating glassy
dynamics at low T .
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FIG. 4. (a) Stretching exponent β plotted against 1/T
for φv = 0.01. (b) Violation of the Stokes-Einstein relation,
Dτα = constant where τα is a relaxation time.

From Fig. 3(a), we also extract a relaxation time τα
which is the time at which Fs(q, t) = 1/e. Fig. 4(b)
plots Dτα against 1/T . The value clearly increases with
decreasing T and demonstrate a violation of the Stokes-
Einstein relation expected for glasses.

C. Four-point correlation function

Close to the glass transition, one region in a glassy fluid
can relax much faster than another one. This spatially
inhomogeneous dynamical behavior is known as dynamic
heterogeneity. To quantitatively study the heterogeneity
in the persistence of the particle configuration, one can
define an overlap function as

cl(t, 0) = eiq·(rl(t)−rl(0)). (8)

It measures how much particle l moves during times 0 and
t at a length scale 2π/q. Note that the average overlap
equals the self-intermediate scattering function Fs(q, t).
Each particle contributes to an overlap field defined by

c(r; t, 0) =
∑
l

cl(t, 0)δ (r− rl(0)) (9)

Consider its spatial correlation

G4(r, t) = 〈c(r; t, 0)c(0; t, 0)〉 − 〈c(0; t, 0)〉2 (10)
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FIG. 5. χ4(t) for φv = 0.01 and the same values of T used in
Fig. 2(a). T decreases from left to right.

where the average is over the spatial origin 0 and the
starting time 0. G4 measures the correlation of the fluc-
tuations in the overlap function between two points that
are separated by r.

In the Fourier space, we get

S4(q̃, t) =

∫
eiq̃·rG4(r, t)dr (11)

= N

〈∣∣∣∣∣ 1

N

∑
l

eiq̃·rl(0) (cl(t, 0)− Fs(q, t))

∣∣∣∣∣
2〉
(12)

One can define the susceptibility as χ4(t) =
limq̃→0 S4(q̃, t), which is simply the variance of the over-
lap function. χ4(t) can be interpreted as the typical size
of correlated clusters in structural relaxation, thus an ef-
ficient measure of the degree of dynamic heterogeneity.

Fig. 5 shows χ4(t) from DPLM simulations. As is typi-
cal for structural glasses, for each temperature, χ4(t) has
a peak, which shifts to larger times, and has a larger value
when T decreases. This reveals an increasing length scale
of dynamic heterogeneity when the system cools down.

IV. EMERGENT FACILITATION BEHAVIORS

Being an energetically non-trivial model with T and φv
independently and fully tunable, it exhibits much richer
physics than purely kinetic models such as KCM. The
particle diffusion coefficientD shown in Fig 2(b) is replot-
ted in Fig. 6(a) against φv. At each T , the linear relation
in the log-log plot at small φv suggests the power-law

D ∼ φαv . (13)

Fig. 6(b) plots the scaling exponent α as a function of T .
For the liquid state at high T , we get α ' 1 indicating
that each void moves independently26. This is supported
by a video in the Supplemental Material28 showing the
motions of the voids as well as the particles at T = 0.5.
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FIG. 6. (a) Particle diffusion coefficient D against void
density φv in log-log scale for values of T used in Fig. 2(a)
with the highest T at the top. (b) Scaling exponent α against
1/T obtained from linear fits to data in (a) with φv ≤ 0.05.

It can be observed that voids diffuse independently. Fig-
ure 7(a) visualizes the same motions using void trajec-
tories (thin lines). They appear slightly more compact
than those of simple random walks due to the disorder.
Particles with non-zero net displacements (pink and red)
induced by the same void can be grouped into a cluster.
Cluster sizes for different voids are relatively uniform.
Voids are not trapped and travel throughout the whole
system independently at longer times. Dynamic hetero-
geneity revealed via these clusters is weak.

We now explain that the low T regime exhibits dy-
namic facilitation19. Fig. 6(b) shows that α rises to 2 and
beyond at low T . The nonlinear scaling dictates that a
void at small φv has arbitrarily small contributions to the
dynamics. According to simple chemical kinetics, α ' 2
corresponds to motion dominated by pairs of coupled
voids. This quantitatively shows an emergent dynamic
facilitation behavior of void motions. It is analogous to
KCM and in particular the spin facilitation dynamics of
the FA model8. We have checked that the nonlinear scal-
ing in Eq. (13) is not due to any void aggregation and is
robust upon tuning the void-void attraction by a shift of
the probability distribution g on the energy scale.

To verify the above facilitation interpretation of

Eq. (13), we directly visualize the particle motions for
T = 0.16 in a video in the Supplemental Material28. It
can be seen that isolated voids are trapped. In sharp
contrast, a pair of voids nearby to each other moves
vigorously. Figure 7(b) shows the void trajectories in
the same simulation which become very compact with
numerous dead-ends indicating confined motions of the
voids due to enhanced disorder. The trajectory of each
isolated void induces no or few displaced particles (pink
and red) as most particles have not hopped or have re-
turned to their original positions. In contrast, the pair
of voids nearby to each other induces significantly more
extensive intertwining trajectories and vigorous particle
displacements. Such pairs dominate the dynamics for the
α ' 2 regime. At longer times, isolated voids typically
remain trapped locally by the disorder unless visited and
untrapped by other mobile pairs. Pairs of voids may split
and new pairs may emerge but these occur at a longer
time scale. Dynamic heterogeneity induced by highly mo-
bile pairs of voids among trapped isolated voids is thus
strong. Fig. 6(b) suggests that α may reach 3 and be-
yond at even lower T indicating dynamics dominated by
triplets of voids, etc.

The dynamics of an isolated void at low T typically
involve motions confined along low-energy paths. Note
that n hops by a single void typically corresponds to n
single-hops by n particles as shown in Fig. 1. A trapped
void hence typically leads to bistable-like back-and-forth
hops by a few particles. Such repetitive motions observed
in MD simulations of polymers have been argued as the
main cause of super-Arrhenius slow-down29. We have
adapted the method in Ref. 29 to quantify these repeti-
tions. Specifically, after a particle has hopped, we mea-
sure the probability Pret that its next hop returns itself
to the original site. The probability P2 that it next hops
instead to a new site is also measured. The results for
φv = 0.01 are plotted in Fig. 8. They follow Pret+P2 = 1
within 0.01% and the minor deviations are due to parti-
cles without a second hop during the observed period. At
large T , we find empirically that Pret ' 1/2 applicable
for small φv noting that the random walks of voids induce
correlated walks of particles30. We have checked that Pret
approaches towards the particle random walk value 1/4
at large φv. As T decreases, Pret increases monotonically
reaching 0.96 for the lowest T studied. The trend strik-
ingly resembles those from polymer simulations29. This
resemblance also strongly supports the physical relevance
of DPLM. Such a high Pret means that most hops are re-
versed and irrelevant to long-time dynamics. The repeti-
tion thus must contribute significantly to the slowdown.
As T → 0, our results support Pret → 1. Most hopping
particles then form two-level systems (TLS) known to be
relevant to glass at very low T 31.
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FIG. 7. (a) A snapshot from a small-scale simulation on a
40×40 lattice with 1592 particles and 8 voids, i.e. φv = 0.005.
It shows the final positions of voids (black squares) after a
short simulation duration of ∆τ = 10−3 at T = 0.5. Particles
with net displacements 0, 1, and > 1 during the period are
shaded in white, pink and red respectively. Each thin line
shows the trajectory of a void and is colored randomly. (b)
Similar to (a) with T = 0.16 and ∆τ = 5 × 104. In both
(a) and (b), the particle MSD during the period is about 0.5.
Particle dynamics are shown in videos in the Supplemental
Material28.

V. CONCLUSION

We have developed DPLM as a lattice gas model based
on distinguishable particles for studying glassy dynam-
ics. In the glassy phase, the particle diffusion coefficient
scales nonlinearly with the void density in the low void
density limit. This implies that isolated voids are essen-
tially trapped and the dynamics of a void is dominated
by facilitation by other voids nearby. Particle hopping
becomes increasingly repetitive at low temperature.

DPLM is defined by a simple, generic, and physically
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FIG. 8. Probabilities Pret and P2 for returning and non-
returning second hops against 1/T for φv = 0.01.

motivated system energy function. It has both non-
trivial energetics and kinetics. It can be efficiently simu-
lated and equilibrium states can be directly generated at
arbitrary temperature and density. Its glassy state does
not rely on frustration on a specific lattice type. These
may render DPLM a unique prototypical model for the
further study of glassy dynamics and aging in disordered
systems.

The definition of DPLM involves no explicit facilita-
tion rule but facilitation behaviors are observed. It thus
provides a strong microscopic support to dynamic facil-
itation and KCM. It will be interesting to deduce the
precise coarse-grained lattice model for DPLM. Dynamic
facilitation of voids demonstrated by DPLM is analo-
gous to the picture of facilitation via pair-interactions of
string-like particle motions motivated by MD simulations
of polymers29. In that picture, each string is initiated by
a single void leading to a one-one correspondence between
strings and voids. From Fig. 1, the motion of a void al-
ters the particle pairings and hence the energy landscape
along its entire path. The energy landscape experienced
by another void nearby is thus altered. Whether the
second void can diffuse across the path of the first void
is thus randomly affected. This demonstrates a form of
path interaction of voids which is essentially equivalent
to string interactions observed in MD29. The particle
and void dynamics in DPLM as well as in polymer sim-
ulations is recently described on the same footing by a
random local configuration tree theory32. Alternatively,
it will also be of interest to study DPLM defined on the
Bethe lattice which may allow exact analysis.

In DPLM, each Vijkl is an independent random vari-
able. More generally, Eq. (2) features a very generic
Hamiltonian. Adopting instead a constant Vijkl ≡ V
gives a simple interacting lattice gas. As lattice gas mod-
els can be mapped to spin models with spin-exchange
(Kawasaki) dynamics, it also represents a ferromag-
netic or anti-ferromagnetic spin model. Alternatively,
a particle-dependent Vijkl ≡ Vkl reduces it to a multi-
species lattice gas such as a binary alloy33. Limiting
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to a site-dependent Vijkl ≡ Vij , it becomes a variant of
the Edwards-Anderson (EA) model for spin glass6 with
Kawasaki dynamics and a random field. In addition, by
continuously varying the correlations between the vari-
ous Vijkl, Eq. (2) describes models interpolating between
these systems.
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Appendix A: Exact equilibrium statistics

Assuming ergodicity, which is supported by our simu-
lations in Sec. III, it is possible to derive exact equilib-
rium states of DPLM in the thermodynamic limit. This
is because the system follows a Boltzmann distribution
which factorizes over the bonds. More specifically, equi-
librium statistics in the ergodic phase of a system with N
particles is described by the canonical partition function

Z =
∑
{si}

e−βE (A1)

where the sum is over all possible system states {si} and
β = 1/kBT . Noting that si = 0 denotes a void, Z can be
rewritten as

Z =
∑
{ni}

∑
{si>0}∈PN

e−βE . (A2)

Here, the first sum is over all possible site occupancies
{ni} with ni defined in Eq. (1). The second sum is over
the set PN of the N ! permutations of particle arrange-
ment {si > 0} at the N occupied sites with ni = 1. Equa-
tion (A2) can be recast into

Z =
∑
{ni}

Z{ni} (A3)

where Z{ni} is the partition function restricted to the
specific site occupation {ni} and is given by

Z{ni} =
∑

{si>0}∈PN

∏
<ij>′

e−βVijsisj . (A4)

after applying Eq. (3).

1. Quenched and annealed averaging

The value of primary interest is the quenched aver-
age lnZ where the bar denotes averaging over the time-
independent variables Vijkl. At sufficiently high T , it may
agree with the annealed average ln 〈Z〉a, where 〈·〉a again

denotes averaging over Vijkl which is now reinterpreted
as additional time-dependent system state variables. A
detailed derivation of this agreement will be explained in
Appendix A 2.

We first study annealed averages which are much easier
to calculate. Applying annealed averaging to Eq. (A4),
we get 〈

Z{ni}
〉
a

=
∑

{si>0}∈PN

∏
<ij>′

〈
e−βVijsisj

〉
a

(A5)

where we have noted that each Vijsisj has a distinct set
of indices and are thus independent random numbers.
Defining

e−βU =
〈
e−βVijsisj

〉
a
, (A6)

U can then be interpreted as the average free energy of
a bond between two NN particles and is given by

U = − 1

β
ln

∫ ∞
−∞

e−βV g(V )dV . (A7)

Substituting Eq. (A6) into Eq. (A5), all terms in the sum
become identical and this trivially gives〈

Z{ni}
〉
a

= N !
∏
<ij>′

e−βU . (A8)

It further reduces to〈
Z{ni}

〉
a

= N ! e−βNbU (A9)

where Nb is the number of pairs of bonded particles for
the given site occupation {ni}. Substituting into the an-
nealed average of Eq. (A3), we get

〈Z〉a = N !
∑
{ni}

e−βNbU (A10)

The factor N ! results from the particle distinguishability
and is related to the Gibb’s paradox34. It is irrelevant and
can be omitted for canonical ensembles with a constant
N considered here. We thus redefine Z by multiplying
with a factor 1/N ! and obtain

〈Z〉a =
∑
{ni}

e−βNbU . (A11)

2. Averaging over permutations

As discussed above, it is valid to redefine Z with an
additional factor 1/N !. Specifically, we continue to adopt
Eq. (A3) while Eq. (A4) is replaced by

Z{ni} =
1

N !

∑
{si>0}∈PN

∏
<ij>′

e−βVijsisj . (A12)

The r.h.s. now involves explicitly an average over particle
permutations among the occupied sites. We will now
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explain that this averages out all Vijsisj . This is because
as emphasized in Eq. (4), Vijsisj with nontrivial indices
si and sj is not quenched. It indeed samples over many
different Vijkl as particles permute, in sharp contrast to
the quenched Vijkl at fixed indices.

Without loss of generality, assume that sites 1 and 2
are occupied nearest neighboring sites. We single out the
permutations concerning sites 1 and 2, giving

Z{ni} =
1

N(N − 1)

N∑
s1,s2=1
s1 6=s2

e−βV12s1s2ZN−2(s1, s2)

(A13)

where ZN−2(s1, s2) is the partition function for the re-
main N − 2 sites excluding particles s1 and s2 defined
as

ZN−2(s1, s2) =
1

(N − 2)!

×
∑

{si>0}∈PN−2

si 6=s1,s2

∏
<ij>′

{i,j}6={1,2}

e−βVijsisj . (A14)

Since all particles are statistically equivalent, the de-
pendence of ZN−2(s1, s2) on s1 and s2 is a manifesta-
tion of random fluctuations resulting from the random
Vijkl. Assuming negligible fluctuations in ZN−2(s1, s2)
at large N , which will be justified later, we write ZN−2 ≡
ZN−2(s1, s2) and Eq. (A13) reduces to

Z{ni} = e−βUZN−2 (A15)

where U is defined in Eq. (A7). Repeating similar pro-
cedures, a factor e−βU is contributed by every bond and
we get

Z{ni} = e−βNbU (A16)

analogous to Eq. (A9) after irrelevant prefactors in the
latter are dropped.

At finite N , Z{ni} for a given set of Vijkl deviates from
the value in Eq. (A16) with a magnitude characterized
by the standard deviation σZ . We will show that σZ
becomes negligible compared with Z{ni} as N increases.
At high T , this is obvious because fluctuations of each
factor e−βVijsisj in Eq. (A12) is small. We thus focus
only on the case of low T . The deduction is non-trivial
because terms in Eq. (A12) are correlated and have large
variances increasing with N .

At low T , a term in Eq. (A12) is significant predomi-
nantly when all its factors are relatively large. We thus
characterize each factor only by whether it is large or
small via the approximation

e−βVijsisj ' ξij
2kBT

e−βU (A17)

where

ξij =

{
1 for Vijsisj ∈ [V0, V0 + 2kBT ]

0 otherwise
(A18)

with V0 = −0.5. Noting that the apriori probability den-
sity g(Vijsisj ) of Vijsisj is uniform in [V0, V0 +1], we have

constructed the approximation so that the average e−βU

of e−βVijsisj is unchanged. In particular, the probability
p that ξij = 1 is

p = 2kBT. (A19)

Equation (A12) is then approximated by

Z{ni} '
1

N !
p−Nbe−βNbU M (A20)

where

M =
∑

{si>0}∈PN

∏
<ij>′

ξij . (A21)

Here, M equals the number of relevant particle permuta-
tions which contribute significantly to Z{ni}. For each of
these permutations, it is easy to see that all interactions
are within kBT from the average value V0 + kBT .

We now evaluate the statistical properties of M by
tackling the combinatorial problem of counting the rele-
vant permutations. For simplicity, we illustrate further
calculations for a fully occupiedN×1 lattice with interac-
tions only in the non-trivial dimension, but generalization
is straightforward. First, there are N ways to occupy site
1. For each choice, there are on average (N − 1)p ways
to occupy site 2 in which ξ12 = 1. It is analogous for the
other sites except for i = N which contributes a factor
p2 because both ξN−1,N and ξ1N must be nonzero. The
average of M is thus

M̄ = N · (N − 1)p · (N − 2)p · · · 1p2

= N ! pN (A22)

As a consistency check, substituting Eq. (A22) into
Eq. (A20) and assuming M ' M̄ recovers Eq. (A16).

More importantly, we now calculate the standard de-
viation σM of M . For each of the N ways to occupy site
1, the number of ways to occupy site 2 follows a binomial
distribution with a variance (N−1)p(1−p). Each of these
choices at sites 1 and 2 on average results at (N−2)!pN−1

relevant ways to permute the remaining N − 2 particles.
Therefore, fluctuations at i = 2 contribute a variance v2
to M given by

v2 = N × (N − 1)p(1− p)× [(N − 2)!pN−1]2

=
(1− p)M̄2

N(N − 1)p
(A23)

where we have used Eq. (A22). We next consider fluc-
tuation at site 3 as a further example. For each of the
on average N(N − 1)p ways to occupy sites 1 and 2,
the number of ways to occupy site 3 follows a binomial
distribution with a variance (N − 2)p(1 − p). Each of
these choices at sites 1, 2 and 3 on average results at
(N − 3)!pN−2 relevant ways to permute the remaining
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N − 3 particles. Fluctuations at site 3 thus contribute a
variance v3 to M given by

v3 = N(N − 1)p× (N − 2)p(1− p)× [(N − 3)!pN−2]2

=
(1− p)M̄2

N(N − 1)(N − 2)p2
(A24)

Fluctuations at other sites can be similarly calculated.
Neglecting correlations between these fluctuations, we

get σ2
M =

∑N
i=2 vi which simplifies to

σ2
M = (1− p)M̄2

(
1

N(N − 1)p
+

1

N(N − 1)(N − 2)p2

+
1

N(N − 1)(N − 2)(N − 3)p3
+ · · ·

)
(A25)

For large N , all but the first term are negligible and we
get σM '

√
(1− p)/p M̄/N . Since Z{ni} ∝M according

to Eq. (A20), the standard deviation of Z{ni} is σZ '√
(1− p)/p Z{ni}/N . In particular, we have

σZ ∼
Z{ni}

N
(A26)

To verify this result, we have numerically performed
direct enumeration of 105 values of Z{ni} using either

Eq. (A12) or Eq. (A20) for 105 independent realizations
of Vijkl for N ≤ 11 and T ≥ 0.2. In both cases, Eq. (A26)
is readily verified. As a further check of our method, we
consider alternative interactions in the form Vijkl ≡ Vkl,
representing particle-dependent interactions as opposed
to site-particle-dependent ones. Using analogous argu-
ments, we find instead σZ ∼ Z{ni}, which is also well
verified numerically by direct enumeration.

It is straightforward to generalize Eq. (A26) to arbi-
trary site occupancies ni in 2D. Therefore, for DPLM
studied in this work, Eq. (A16) admits corrections only
of order 1/N and is essentially exact for large N . Sub-
stituting Eq. (A16) into Eq. (A3), we get

Z =
∑
{ni}

e−βNbU (A27)

where all Vijkl-dependent correction terms are of higher
orders in 1/N . Note that similar arguments also imply
that ZN−2(s1, s2) defined in Eq. (A14) has negligible fluc-
tuations and this justifies the assumption used in deriving
Eq. (A15).

We emphasize that we have not at this point performed
the ensemble average over Vijkl and Z in Eq. (A27) have
already become independent of Vijkl due to the aver-
aging over particle permutations. This is quite analo-
gous to self-averaging behaviors exhibited by many sys-
tems. Here, sample to sample fluctuations of Z hence
vanish and all quenched averaging becomes trivial, i.e.
lnZ = lnZ. A further comparison of Eq. (A27) with
Eq. (A11) gives

lnZ = lnZ = ln 〈Z〉a . (A28)

This shows the identical statistical properties of quenched
and annealed ensembles in the ergodic phase for large N .

3. Equilibrium properties

Let ZLG be the partition function of a simple identical-
particle lattice gas with a NN particle interaction energy
U . It is easy to see that ZLG is in fact identical to Z in
Eq. (A27), i.e.

Z = ZLG. (A29)

Therefore, DPLM and simple lattice gas have exactly the
same equilibrium particle occupation statistics despite
the very different dynamics. A simple lattice gas has
a gas-liquid phase transition at the vaporization temper-
ature Tv, which depends on U and thus on the distribu-
tion g. The lattice gas can be further mapped to the 2D
Ising model with an exchange J = −U/433. Applying

Onsager’s solution Tv = 2J/ ln(1 +
√

2) for the 2D Ising
model34, we get

Tv =
−U

4 ln(1 +
√

2)
(A30)

where U is given in Eq. (A7) evaluated at T = Tv. Solv-
ing Eqs. (A7) and (A30) numerically, we get Tv ' 0.132.
We have verified this value of Tv using small-scale DPLM
simulations at e.g. φv = 0.5. Since Tv is below T stud-
ied in our main simulations, the systems considered here
correspond to lattice gases in the gaseous phase, in which
particles are only slightly attractive and neither particles
nor voids in dilute concentration aggregate.

We now derive the equilibrium distribution of the inter-
actions for annealed ensembles, which is identical to that
of quenched ensembles according to Eq. (A28). Restrict-
ing our consideration to a given site occupancy {ni}. We
study the equilibrium properties of the remaining state
variables si > 0 and Vijkl. They follow the Boltzmann
probability distribution

Peq({si}, {Vijkl}) ∝ e−βE
∏

<i,j>,k,l

g(Vijkl) (A31)

where the product is over all NN sites i and j and all
particles k and l. Applying Eq. (3), we get

Peq({si}, {Vijkl}) ∝

 ∏
<i,j>′

e−βVijsisj g(Vijsisj )


×

 ∏
{<i,j>,k,l}∈C

g(Vijkl)

 (A32)

Here, the first product is restricted to bonded NN sites i
and j. Thus, the realized interaction Vijsisj which de-
scribes an existing bond in the state {si} follows the
Boltzmann distribution

peq(Vijsisj ) =
1

N
e−βVijsisj g(Vijsisj ) (A33)

where N =
∫
e−βV g(V )dV is a normalization constant.

The second product in Eq. (A32) is over the complemen-
tary set C of unrealized interactions Vijkl which do not
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represent any existing bond in the state {si}. This equa-
tion also implies that these unrealized interactions simply
follow g(Vijkl).

We now further derive some other useful results.
Adopting annealed ensemble, all si in the r.h.s. of
Eq. (A32) are dummy indices of identical independent
variables. All permutations of si are indeed equivalent
and only amount to different labeling of the particles.
To see this mathematically, we note that after integrating
Peq({si}, {Vijkl}) over all Vijkl, we get a uniform proba-
bility distribution

Peq({si}) = 1/N ! (A34)

demonstrating the equivalence of all N ! permutations
{si} for annealed ensembles as expected.

In addition, the average interaction between bonded
particles is 〈

Vijsisj
〉

=

∫
V peq(V ) dV (A35)

where peq is given in Eq. (A33). Using Eq. (3),
the average energy per particle is then 〈E〉 /N =
〈Nb/N〉

〈
Vijsisj

〉
. For small φv with mostly isolated

voids, the average number of bonds per particle is
〈Nb/N〉 ' 2(1− φv). This gives

〈E〉
N

= 2(1− φv)
∫
V peq(V ) dV. (A36)

Appendix B: Simulation details

We will describe both elementary and accelerated sim-
ulation approaches, which have been checked to generate
statistically identical results. Our main simulations are
all performed using accelerated algorithms. Each of them
at lattice size L = 100 takes up to about 20 hours to run
on an Intel Xeon processor core. Data for each set of
values of T and φv are typically averaged over 5 similar
independent runs. Additional shorter runs recording par-
ticle positions at a higher time-resolution are also needed
to obtain correlation data at short time.

1. Elementary kinetic Monte Carlo method

Simulations can be performed using standard kinetic
Monte Carlo approach. At each time step ∆t, the follow-
ing procedures can be performed:

• Randomly choose a site i.

• Randomly choose a site j which is a NN of i.

• If ni = 1 and nj = 0 is false, reject this step.

• Accept particle hop from i to j with probability
4L2w∆t where w is calculated using Eq. (5)

Here, ∆t must be small and satisfies 4L2w∆t ≤ 1 for all
possible configurations.

2. Rejection-free method

The simple kinetic Monte Carlo algorithm above is in-
efficient due to too many rejected move attempts. A
rejection-free method35 is much more efficient. Let Nv =
L2 − N be the number of voids. We optimize our algo-
rithm for φv ' 0 which is most demanding due to the
slow dynamics. The number of possible hops is 4Nv in
general. The associated hopping rates w are calculated
using Eq. (5) and stored at the lowest level of a complete
binary tree. Each parent node then stores the sum of the
two immediate children. Note that an exchange of two
voids is unphysical and is assigned a rate 0.

For each time step ∆t, one of the 4Nv possible hops
is randomly selected with a relative probability w. It is
straightforward to select the hop efficiently by randomly
descending the binary tree using the node values as the
relative probabilistic weights. The hop is then executed.
A few hopping rates associated with the hopping particle
and its neighbors are recalculated since the local configu-
ration has changed. The binary tree is then also updated
accordingly. It is easy to see that ∆t is time dependent
and follows ∆t = 1/wroot, where wroot is the value at the
root of the binary tree and equals the sum of all the 4Nv
rates36.

3. Two-step interaction energy tabulation

A nontrivial point in the programming for DPLM is
that the total number of Vijkl is of order N2L2 ∼ N3.
This requires too much memory storage for large N . For
medium values of N , Vijkl can be sampled only when
needed and stored using a hash data structure. In our
main simulations with a large N ∼ L2 = 104, it is nec-
essary to adopt a two-step tabulation method to be ex-
plained below.

As an approximate scheme, we put

Vijkl = v(Qi(k), Qj(l)). (B1)

Here, each Qi for site i is an independent random permu-
tation function mapping the set 1, 2, . . . , N to itself. The
function v thus involves only order N2 tabulated random
numbers sampled from g which are independent from
each other except when the symmetry v(k, l) = v(l, k)
applies. Before simulation starts, the functions v and
Qi are randomly sampled and stored. The memory re-
quirement significantly decreases from order N3 to order
N2. The method do introduce some unwanted correla-
tions between the ideally independent Vijkl. However, we
have checked in medium scale simulations that it gives re-
sults statistically identical to those using the hash-table
method.
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FIG. 9. (a) Plot of energy per particle E/N against time
t from four independent runs adopting elementary (solid
curves) and direct (dashed curves) initialization algorithms.
The black dotted line shows 〈E〉 /N from Eq. (A36). (b) A
semi-log plot of the probability distribution pt(Vijsisj ) of re-
alized interaction Vijsisj at time t from simulations adopt-
ing the elementary initialization algorithm. pt(Vijsisj ) for
t ≥ 256000 has converged to peq from Eq. (A33) indicated
by the black dashed line. For both (a) and (b), T = 0.170
and φv = 0.01.

4. Elementary initial thermalization

A straightforward approach is to generate each Vijkl
independently from the probability distribution g tak-
ing into account the symmetry Vijkl = Vjilk. The system
state is initialized at infinite temperature by putting each
particle randomly onto an unoccupied site in the L × L
lattice with uniform probability. This gives ni and si at
time t = 0. Thermalization kinetic Monte Carlo steps,
typically performed using the rejection-free method ex-
plained above, are then conducted at the target temper-
ature T until equilibrium is attained.

During thermalization, equilibrium is indicated by the
stabilization of various statistical measures such as the
average particle energy E/N . We have checked numer-
ically that equilibration can be performed successfully
under various conditions and a particularly demanding
example in the glassy phase is illustrated in Fig. 9(a).

The solid curves show E/N against t from two typical
runs for T = 0.17 and φv = 0.01. They stabilize towards
the average equilibrium value 〈E〉 /N given in Eq. (A36).
Figure 9(b) shows the evolution of the probability dis-
tribution pt(Vijsisj ) of the realized interaction Vijsisj at
time t from the same runs. It crossovers smoothly from
the initial distribution g toward the equilibrium distribu-
tion peq in Eq. (A33). From both Figs. 9(a) and (b), the
system can be deemed equilibrium for the given T and φv
for t & 2.5×105. The results verify numerically Eq. (A36)
and Eq. (A33). More importantly, they hence also verify
the agreement between quenched and annealed averages
used in their derivations.

5. Direct initialization method

System equilibration at large N using thermalization
Monte Carlo steps explained above can take very long
runtime at low T . This is a major difficulty for many
lattice models and most MD simulations of glass. Be-
ing able to directly construct equilibrium states is thus
a highly desirable property. This is possible for KCM
with trivial energetics, non-spatial models37,38 and some
frustrated spin models defined on triangular or related
lattices39. It is also possible for MD simulations of a sys-
tem with long-range shifted interactions23,24. DPLM is
in our knowledge the only finite-dimensional and ener-
getically non-trivial lattice model of glass defined on a
general lattice with this capability.

First, we calculate the particle occupancy ni and the
particle index si at every site i. We start by simulat-
ing a simple identical-particle lattice gas because of the
equivalent particle statistics (see Eq. (A29)). It is per-
formed with a constant NN particle interaction energy U
given in Eq. (A7) and we use the same computer code for
DPLM with Vijkl reduced to the constant U . Similar to
the elementary initial thermalization approach described
above, we initialize the particle positions randomly and
then equilibrate the simple lattice gas by a thermaliza-
tion run. It is computationally very efficient because of
the absence of glassification at arbitrary T . The thermal-
ized particle positions give si and ni at time t = 0. Note
that due to the identical-particle nature of this part of
the simulation, only ni is of interest. The precise parti-
cle permutation as specified by si for the occupied sites is
irrelevant because all permutations are equally probable
(see Eq. (A34)).

Second, we randomly generate Vijkl from the annealed
ensemble, which is statistically identical to the quenched
ensemble (see Eq. (A28)). Specifically, We sample all
unrealized Vijkl from the distribution g while realized in-
teractions Vijsisj appearing in the state {si} are sampled
from the Boltzmann distribution peq given by Eq. (A33).
This completes the generation of an equilibrium state at
T .

In Fig. 9(a), the two dashed curves show the particle
energy E/N from two typical runs using this direct ini-
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tialization method. They support that the systems have
attained equilibrium energy once constructed and this
numerically verifies the method. Note that at finite N ,
interactions from this approach differ in principle from
that based on the elementary method in Appendix B 4
in which all interactions are sampled from g. Neverthe-
less, since the total number of Vijkl is of order N3 while
the number of bonds is of order N , the fraction of realized
interactions sampled from peq is only of order 1/N2. The
fraction thus approaches zero at large N and this demon-
strations the equivalence of the elementary and the direct
methods. Even after using our two-step tabulation ap-
proximation in Eq. (B1), the fraction increases to order
1/N and still vanishes for large N . This approach of
determining the particle arrangement ni and si before
generating the interaction Vijkl is closely analogous to a
planting method in Refs. 23 and 24.

6. Software reliability

Correct software implementation is highly nontrivial
because minor programming mistakes may affect the par-
ticle dynamics only occasionally and can be very difficult
to spot. One helpful consistency check is to measure the
probability distribution of the interaction energy Vijsisj
at equilibrium and compare with the exact distribution in
Eq. (A33). We have also conducted more general Boltz-
mann distribution tests36 by performing long simulations
using a small lattice with all but several particles frozen.
Then, only a few thousand different configurations will
be realized. We measure the total occurrence durations
and the system energies of all these configurations and
make sure that the results agree with the Boltzmann dis-
tribution within the expected statistical errors. With
these tests, we believe that our software implementation
is highly reliable.
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